In the context of humanoid skill learning, movement primitives have gained much attention because of their compact representation and convenient combination with a myriad of optimization approaches. Among them, a well-known scheme is to use Dynamic Movement Primitives (DMPs) with reinforcement learning (RL) algorithms. While various remarkable results have been reported, skill learning with physical constraints has not been sufficiently investigated. For example, when RL is employed to optimize the robot joint trajectories, the exploration noise could drive the resulting trajectory out of the joint limits. In this paper, we focus on robot skill learning characterized by joint limit avoidance, by introducing the novel Constrained Dynamic Movement Primitives (CDMPs). By controlling a set of transformed states (called exogenous states) instead of the original DMPs states, CDMPs are capable of maintaining the joint trajectories within the safety limits. We validate CDMPs on the humanoid robot iCub, showing the applicability of our approach.

Constrained DMPs for Feasible Skill Learning on Humanoid Robots / Duan, A; Camoriano, R; Ferigo, D; Calandriello, D; Rosasco, L; Pucci, D. - ELETTRONICO. - (2018), pp. 1032-1038. (Intervento presentato al convegno 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids) tenutosi a Beijing, China nel 06-09 November 2018) [10.1109/HUMANOIDS.2018.8624934].

Constrained DMPs for Feasible Skill Learning on Humanoid Robots

Camoriano R;
2018

Abstract

In the context of humanoid skill learning, movement primitives have gained much attention because of their compact representation and convenient combination with a myriad of optimization approaches. Among them, a well-known scheme is to use Dynamic Movement Primitives (DMPs) with reinforcement learning (RL) algorithms. While various remarkable results have been reported, skill learning with physical constraints has not been sufficiently investigated. For example, when RL is employed to optimize the robot joint trajectories, the exploration noise could drive the resulting trajectory out of the joint limits. In this paper, we focus on robot skill learning characterized by joint limit avoidance, by introducing the novel Constrained Dynamic Movement Primitives (CDMPs). By controlling a set of transformed states (called exogenous states) instead of the original DMPs states, CDMPs are capable of maintaining the joint trajectories within the safety limits. We validate CDMPs on the humanoid robot iCub, showing the applicability of our approach.
2018
978-1-5386-7283-9
File in questo prodotto:
File Dimensione Formato  
Constrained_DMPs_for_Feasible_Skill_Learning_on_Humanoid_Robots.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2982141