Full-size 3D model of ITER ICRF antenna with 1D plasma electron density (ne) and 3D ne (from EMC3-Eirene) was simulated using the RAPLICASOL (COMSOL-based) code. Impedance matrices and coupled power agree well with TOPICA with 1D ne. Cases with 3D ne show port-to-port differences compared to 1D ne, as well as a lower (about 10%) coupled power. Efficient minimization of ITER antenna near-fields (to reduce RF sheaths by optimizing feeding) calculated by TOPICA and RAPLICASOL is possible with [0;π;π;0] (about balanced strap powers) and is even lower with [0;π;0;π] toroidal phasing (with dominant power from central straps). Lowest near-fields are with [0;π] poloidal phasing, but [0;-π/2] will be used in a load resilience setup with 3dB splitters. Under EUROfusion prospective research and development, in-port ICRF antenna concept for EU-DEMO with 8 quadruplets (4x toroidal by 2x poloidal) is considered to deliver 16.7 MW (3 antennas yielding 50 MW). Areas around the equatorial port and cut-ins in breeding blankets are used, with emphasis on [0;π;π;0] optimization. High-resolution RAPLICASOL calculations with full ne profile (without imposing a minimum ne value) shed light on field distribution with propagative slow wave in detailed antenna geometry.

Multi-strap in-port ICRF antenna modeling and development in support of ITER and EU-DEMO / Bobkov, Volodymyr; Bilato, Roberto; Calarco, François; Faugel, Helmut; Girka, Oleksii; Helou, Walid; Lamalle, Philippe; Maquet, Vincent; Milanesio, Daniele; Ochoukov, Roman; Polli, Vincent; Tierens, Wouter; Usoltseva, Maria; Zhang, Wei. - In: AIP CONFERENCE PROCEEDINGS. - ISSN 0094-243X. - ELETTRONICO. - 2984:(2023). (Intervento presentato al convegno 24th Topical Conference on Radio-Frequency Power in Plasmas tenutosi a Annapolis, USA nel 26–28 September 2022) [10.1063/5.0163035].

Multi-strap in-port ICRF antenna modeling and development in support of ITER and EU-DEMO

Milanesio, Daniele;
2023

Abstract

Full-size 3D model of ITER ICRF antenna with 1D plasma electron density (ne) and 3D ne (from EMC3-Eirene) was simulated using the RAPLICASOL (COMSOL-based) code. Impedance matrices and coupled power agree well with TOPICA with 1D ne. Cases with 3D ne show port-to-port differences compared to 1D ne, as well as a lower (about 10%) coupled power. Efficient minimization of ITER antenna near-fields (to reduce RF sheaths by optimizing feeding) calculated by TOPICA and RAPLICASOL is possible with [0;π;π;0] (about balanced strap powers) and is even lower with [0;π;0;π] toroidal phasing (with dominant power from central straps). Lowest near-fields are with [0;π] poloidal phasing, but [0;-π/2] will be used in a load resilience setup with 3dB splitters. Under EUROfusion prospective research and development, in-port ICRF antenna concept for EU-DEMO with 8 quadruplets (4x toroidal by 2x poloidal) is considered to deliver 16.7 MW (3 antennas yielding 50 MW). Areas around the equatorial port and cut-ins in breeding blankets are used, with emphasis on [0;π;π;0] optimization. High-resolution RAPLICASOL calculations with full ne profile (without imposing a minimum ne value) shed light on field distribution with propagative slow wave in detailed antenna geometry.
2023
978-0-7354-4604-5
File in questo prodotto:
File Dimensione Formato  
Bobkov_RFPP22_ICRH4DEMO.pdf

accesso aperto

Descrizione: Bobkov_DEMO
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 3.86 MB
Formato Adobe PDF
3.86 MB Adobe PDF Visualizza/Apri
Bobkov_P2-11_rfppc2022_v4.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 3.53 MB
Formato Adobe PDF
3.53 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2981966