We apply Quantile Regression (QR) for lightpath quality-of-transmission (QoT) estimation with the aim of identifying uncertain decisions and then exploit Shapley Additive Explanations (SHAP) to quantify lightpath features’ importance by means of SHAP values and validate the model’s decisions in a post-processing phase. Numerical results show that our approach can eliminate more than 98% of false predictions and that SHAP values can validate up to 90% of the model's uncertain decisions.

Using SHAP Values to Validate Model’s Uncertain Decision for ML-based Lightpath Quality-of-Transmission Estimation / Houssiany, Hadi; Ayoub, Omran; Rottondi, Cristina; Bianco, Andrea. - ELETTRONICO. - (2023), pp. 1-5. (Intervento presentato al convegno 23rd International Conference on Transparent Optical Networks (ICTON) tenutosi a Bucharest, Romania nel 2-6 July 2023) [10.1109/ICTON59386.2023.10207178].

Using SHAP Values to Validate Model’s Uncertain Decision for ML-based Lightpath Quality-of-Transmission Estimation

Rottondi, Cristina;Bianco, Andrea
2023

Abstract

We apply Quantile Regression (QR) for lightpath quality-of-transmission (QoT) estimation with the aim of identifying uncertain decisions and then exploit Shapley Additive Explanations (SHAP) to quantify lightpath features’ importance by means of SHAP values and validate the model’s decisions in a post-processing phase. Numerical results show that our approach can eliminate more than 98% of false predictions and that SHAP values can validate up to 90% of the model's uncertain decisions.
2023
979-8-3503-0303-2
File in questo prodotto:
File Dimensione Formato  
ICTON_reference.docx (1).pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 516.38 kB
Formato Adobe PDF
516.38 kB Adobe PDF Visualizza/Apri
Using_SHAP_Values_to_Validate_Models_Uncertain_Decision_for_ML-based_Lightpath_Quality-of-Transmission_Estimation.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2981205