We propose a machine learning-based framework to acquire parameters that define stationary-and-dynamic behavior of VCSEL. Circuit-level simulations of light-current and S21 are used to train the model. In terms of relative-prediction-error promising results are achieved.

A Machine Learning-Based Model for Characterizing Stationary-and-Dynamic Behavior of VCSEL / Khan, Ihtesham; Marchisio, Andrea; Tunesi, Lorenzo; Masood, MUHAMMAD UMAR; Ghillino, Enrico; Curri, Vittorio; Carena, Andrea; Bardella, Paolo. - ELETTRONICO. - (2023), pp. 1-2. (Intervento presentato al convegno CLEO: Science and Innovations tenutosi a San Jose, CA, United States nel 7-12 May 2023) [10.1364/CLEO_AT.2023.JW2A.141].

A Machine Learning-Based Model for Characterizing Stationary-and-Dynamic Behavior of VCSEL

Ihtesham Khan;Andrea Marchisio;Lorenzo Tunesi;Muhammad Umar Masood;Vittorio Curri;Andrea Carena;Paolo Bardella
2023

Abstract

We propose a machine learning-based framework to acquire parameters that define stationary-and-dynamic behavior of VCSEL. Circuit-level simulations of light-current and S21 are used to train the model. In terms of relative-prediction-error promising results are achieved.
2023
978-1-957171-25-8
File in questo prodotto:
File Dimensione Formato  
cleo_fs-2023-jw2a.141.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
C_CLEO_A_Machine_Learning_Based_Model_for_Characterizing_Stationary_and_Dynamic_Behavior_of_VCSEL_02112022 (1).pdf

Open Access dal 13/05/2024

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 953.9 kB
Formato Adobe PDF
953.9 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2980624