We propose a machine learning-based framework to acquire parameters that define stationary-and-dynamic behavior of VCSEL. Circuit-level simulations of light-current and S21 are used to train the model. In terms of relative-prediction-error promising results are achieved.
A Machine Learning-Based Model for Characterizing Stationary-and-Dynamic Behavior of VCSEL / Khan, Ihtesham; Marchisio, Andrea; Tunesi, Lorenzo; Masood, MUHAMMAD UMAR; Ghillino, Enrico; Curri, Vittorio; Carena, Andrea; Bardella, Paolo. - ELETTRONICO. - (2023), pp. 1-2. (Intervento presentato al convegno CLEO: Science and Innovations tenutosi a San Jose, CA, United States nel 7-12 May 2023) [10.1364/CLEO_AT.2023.JW2A.141].
A Machine Learning-Based Model for Characterizing Stationary-and-Dynamic Behavior of VCSEL
Ihtesham Khan;Andrea Marchisio;Lorenzo Tunesi;Muhammad Umar Masood;Vittorio Curri;Andrea Carena;Paolo Bardella
2023
Abstract
We propose a machine learning-based framework to acquire parameters that define stationary-and-dynamic behavior of VCSEL. Circuit-level simulations of light-current and S21 are used to train the model. In terms of relative-prediction-error promising results are achieved.File | Dimensione | Formato | |
---|---|---|---|
cleo_fs-2023-jw2a.141.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
C_CLEO_A_Machine_Learning_Based_Model_for_Characterizing_Stationary_and_Dynamic_Behavior_of_VCSEL_02112022 (1).pdf
Open Access dal 13/05/2024
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
953.9 kB
Formato
Adobe PDF
|
953.9 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2980624