This paper presents an efficient implementa- tion of the vector-output kernel Ridge regression (KRR). The proposed approach is applied to model the frequency- domain behavior of the magnitude of the transfer function of a parametric high-speed link as a function of 11 parameters. The accuracy and the computational cost of the proposed technique are assessed on noisy samples and compared with the ones of a state-of-the-art modeling technique based on the combination of the principal components analysis (PCA) and the least-squares support vector machine (LS-SVM) regression.

Modeling of a High-Speed Link Based on an Efficient Implementation of Vector-Valued Machine Learning Kernel Regression / Soleimani, Nastaran; Trinchero, Riccardo; Canavero, Flavio. - ELETTRONICO. - (2023). (Intervento presentato al convegno 21ème Colloque International et Exposition sur la Compatibilité ÉlectroMagnétique (CEM 2023) tenutosi a Toulouse, France nel 13-15 juin 2023).

Modeling of a High-Speed Link Based on an Efficient Implementation of Vector-Valued Machine Learning Kernel Regression

Soleimani, Nastaran;Trinchero, Riccardo;Canavero, Flavio
2023

Abstract

This paper presents an efficient implementa- tion of the vector-output kernel Ridge regression (KRR). The proposed approach is applied to model the frequency- domain behavior of the magnitude of the transfer function of a parametric high-speed link as a function of 11 parameters. The accuracy and the computational cost of the proposed technique are assessed on noisy samples and compared with the ones of a state-of-the-art modeling technique based on the combination of the principal components analysis (PCA) and the least-squares support vector machine (LS-SVM) regression.
File in questo prodotto:
File Dimensione Formato  
CEM2023_NoisyMO_KRR.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 331.36 kB
Formato Adobe PDF
331.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2980406