The purpose of this paper is to study minimal mon- ads associated to a rank two vector bundle  on 𝐏𝑛. In particular, we study situations where  has 𝐻 𝑖 βˆ— () = 0 for 1 < 𝑖 < 𝑛 βˆ’ 1, except for one pair of values (π‘˜, 𝑛 βˆ’ π‘˜). We show that on 𝐏8, if 𝐻 3 βˆ— () = 𝐻 4 βˆ— () = 0, then  must be decomposable. More generally, we show that for 𝑛 β©Ύ 4π‘˜, there is no indecomposable bundle  for which all intermediate cohomology modules except for 𝐻 1 βˆ— , 𝐻 π‘˜ βˆ— , 𝐻 π‘›βˆ’π‘˜ βˆ— , 𝐻 π‘›βˆ’1 βˆ— are zero. M S C 2 0 2 0 14F06, 14J60 (primary)

Rank two bundles on P^n with isolated cohomology / Malaspina, F.; Rao, A. P.. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - 55:5(2023), pp. 2493-2504. [10.1112/blms.12877]

Rank two bundles on P^n with isolated cohomology

Malaspina, F.;
2023

Abstract

The purpose of this paper is to study minimal mon- ads associated to a rank two vector bundle  on 𝐏𝑛. In particular, we study situations where  has 𝐻 𝑖 βˆ— () = 0 for 1 < 𝑖 < 𝑛 βˆ’ 1, except for one pair of values (π‘˜, 𝑛 βˆ’ π‘˜). We show that on 𝐏8, if 𝐻 3 βˆ— () = 𝐻 4 βˆ— () = 0, then  must be decomposable. More generally, we show that for 𝑛 β©Ύ 4π‘˜, there is no indecomposable bundle  for which all intermediate cohomology modules except for 𝐻 1 βˆ— , 𝐻 π‘˜ βˆ— , 𝐻 π‘›βˆ’π‘˜ βˆ— , 𝐻 π‘›βˆ’1 βˆ— are zero. M S C 2 0 2 0 14F06, 14J60 (primary)
File in questo prodotto:
File Dimensione Formato  
Bulletin of London Math Soc - 2023 - Malaspina - Rank two bundles on Pn mathbf P n with isolated cohomology-2.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 154.54 kB
Formato Adobe PDF
154.54 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2979703