We propose a machine learning-based model to extract physical parameters characterizing stationary and dynamic behavior of a VCSEL. The model is trained with circuit-level simulations of light-current and S21 characteristics. Excellent results are achieved as a relative prediction error.
Automated model for characterization of VCSEL circuit-level parameters using machine learning / Marchisio, Andrea; Khan, Ihtesham; Tunesi, Lorenzo; Masood, Muhammad Umar; Ghillino, Enrico; Curri, Vittorio; Carena, Andrea; Bardella, Paolo. - ELETTRONICO. - (2023), pp. 264-266. (Intervento presentato al convegno European Conference on Integrated Optics tenutosi a Enschede, Paesi Bassi nel 19-21 Aprile 2023).
Automated model for characterization of VCSEL circuit-level parameters using machine learning
Marchisio, Andrea;Khan, Ihtesham;Tunesi, Lorenzo;Masood, Muhammad Umar;Curri, Vittorio;Carena, Andrea;Bardella, Paolo
2023
Abstract
We propose a machine learning-based model to extract physical parameters characterizing stationary and dynamic behavior of a VCSEL. The model is trained with circuit-level simulations of light-current and S21 characteristics. Excellent results are achieved as a relative prediction error.File | Dimensione | Formato | |
---|---|---|---|
2023_ECIO_Automated_Model_for_Characterization_of_VCSEL_Circuit_level_Parameters_Using_Machine_Learning.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
291.65 kB
Formato
Adobe PDF
|
291.65 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2978489