Mixed-precision uses in each layer of a Deep Neural Network the minimum bit-width that preserves accuracy. In this context, our new Reconfigurable 2D-Convolution Module (RCM) computes N =1, 2 or 4 Multiply-and-Accumulate operations in parallel with configurable precision from 1 to 16/N bits. Our design-space exploration via high-level synthesis obtains the best points in the latency vs area space, varying the size of the tensor tile handled by our RCM and its parallelism. A comparison with a non-configurable module on a 28-nm technology shows many reconfigurable Pareto points for low bit-width configurations, making our RCM a promising mixed-precision accelerator for inference.
A Reconfigurable 2D-Convolution Accelerator for DNNs Quantized with Mixed-Precision / Casu, Mario Roberto; Urbinati, Luca. - ELETTRONICO. - (2023), pp. 210-215. (Intervento presentato al convegno Applepies 2022 tenutosi a Genova nel September 26–27, 2022) [10.1007/978-3-031-30333-3_27].
A Reconfigurable 2D-Convolution Accelerator for DNNs Quantized with Mixed-Precision
Casu, Mario Roberto;Urbinati, Luca
2023
Abstract
Mixed-precision uses in each layer of a Deep Neural Network the minimum bit-width that preserves accuracy. In this context, our new Reconfigurable 2D-Convolution Module (RCM) computes N =1, 2 or 4 Multiply-and-Accumulate operations in parallel with configurable precision from 1 to 16/N bits. Our design-space exploration via high-level synthesis obtains the best points in the latency vs area space, varying the size of the tensor tile handled by our RCM and its parallelism. A comparison with a non-configurable module on a 28-nm technology shows many reconfigurable Pareto points for low bit-width configurations, making our RCM a promising mixed-precision accelerator for inference.File | Dimensione | Formato | |
---|---|---|---|
published_paper.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
accepted_version.pdf
Open Access dal 30/04/2024
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
5.58 MB
Formato
Adobe PDF
|
5.58 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2978332