In recent years, a number of computationally efficient models have been developed that adequately describe the static and dynamic behavior of the Vertical Cavity Surface Emitting Laser (VCSEL). In order to correctly recreate the behavior of existing laser sources, a large number of physical parameters must be specified. Finding these unknown physical characteristics in experimental curves may be time-consuming, and mainly requires trial and error processes or regression analysis. Instead of manually analyzing experimental data to find the best VCSEL parameters, we propose a Machine Learning (ML) based solution to automate the process. The proposed approach exploits the parametric dataset obtained from Light-current and Small-signal modulation responses to extract the required model parameters. Excellent results are obtained in terms of relative prediction error.

Autonomous Data-driven Model for Extraction of VCSEL Circuit-level Parameters / Khan, Ihtesham; Tunesi, Lorenzo; Masood, Muhammad Umar; Ghillino, Enrico; Curri, Vittorio; Carena, Andrea; Bardella, Paolo. - ELETTRONICO. - (2022), pp. 1530-1533. (Intervento presentato al convegno Asia Communications and Photonics Conference (ACP) tenutosi a Shenzhen, China nel 05-08 November 2022) [10.1109/ACP55869.2022.10088942].

Autonomous Data-driven Model for Extraction of VCSEL Circuit-level Parameters

Khan, Ihtesham;Tunesi, Lorenzo;Masood, Muhammad Umar;Curri, Vittorio;Carena, Andrea;Bardella, Paolo
2022

Abstract

In recent years, a number of computationally efficient models have been developed that adequately describe the static and dynamic behavior of the Vertical Cavity Surface Emitting Laser (VCSEL). In order to correctly recreate the behavior of existing laser sources, a large number of physical parameters must be specified. Finding these unknown physical characteristics in experimental curves may be time-consuming, and mainly requires trial and error processes or regression analysis. Instead of manually analyzing experimental data to find the best VCSEL parameters, we propose a Machine Learning (ML) based solution to automate the process. The proposed approach exploits the parametric dataset obtained from Light-current and Small-signal modulation responses to extract the required model parameters. Excellent results are obtained in terms of relative prediction error.
2022
978-1-6654-8155-7
File in questo prodotto:
File Dimensione Formato  
Autonomous_Data-driven_Model_for_Extraction_of_VCSEL_Circuit-level_Parameters.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
C_ACP_Autonomous_Data_driven_Model_for_Extraction_of_VCSEL_Circuit_level_Parameters_02082022 (1).pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 867.14 kB
Formato Adobe PDF
867.14 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2977900