We investigate the statistical equilibrium properties of a system of classical particles interacting via Newtonian gravity, enclosed in a three-dimensional spherical volume. Within a mean-field approximation we derive an equation for the density profiles maximizing the microcanonical entropy and solve it numerically At low angular momenta, i.e. for a slowly rotating system, the well-known gravitational collapse "transition" is recovered. At higher angular momenta, instead, rotational symmetry can spontaneously break down giving rise to more complex equilibrium configurations, such as double-clusters ("double stars"). We analyze the thermodynamics of the system and the stability of the different equilibrium configurations against rotational symmetry breaking, and provide the global phase diagram.

Thermodynamics of rotating self-gravitating systems / Votyakov, E. V.; De Martino, A.; Gross, D. H. E.. - In: THE EUROPEAN PHYSICAL JOURNAL. B, CONDENSED MATTER PHYSICS. - ISSN 1434-6028. - 29:4(2002), pp. 593-603. [10.1140/epjb/e2002-00317-4]

Thermodynamics of rotating self-gravitating systems

De Martino A.;
2002

Abstract

We investigate the statistical equilibrium properties of a system of classical particles interacting via Newtonian gravity, enclosed in a three-dimensional spherical volume. Within a mean-field approximation we derive an equation for the density profiles maximizing the microcanonical entropy and solve it numerically At low angular momenta, i.e. for a slowly rotating system, the well-known gravitational collapse "transition" is recovered. At higher angular momenta, instead, rotational symmetry can spontaneously break down giving rise to more complex equilibrium configurations, such as double-clusters ("double stars"). We analyze the thermodynamics of the system and the stability of the different equilibrium configurations against rotational symmetry breaking, and provide the global phase diagram.
File in questo prodotto:
File Dimensione Formato  
e2002-00317-4.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 873.31 kB
Formato Adobe PDF
873.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2976715