Faults and anomalous behavior affect the operation of Heating, Ventilation and Air Conditioning (HVAC) systems. This causes performance loss, energy waste, noncompliance with regulations and discomfort among occupants. To prevent damage, automated, fast identification of faults in HVAC systems is needed. Fault Detection and Diagnosis (FDD) techniques are very effective for these purposes. The best FDD methods, in terms of cost effectiveness and data exploitation, are based on process history; i.e., on sensor data from automation systems. In this work, supervised and semisupervised models were developed. Other than with regard to outdoor temperature and humidity, the input parameters of an HVAC system have few internal variables. Performance of traditional methods (e.g., VAR, Random Forest) is low, so Artificial Neural Networks (ANNs) were selected, since they can capture nonlinear relationships among features and are easily optimized. ANNs can detect simultaneous faults from different classes. ANN metrics are easily evaluated. The ground truth is obtained from process history (supervised case) and from a mix of deterministic methods and clustering (semi-supervised case). The derivation of the ground truth in the semi-supervised case, and extensive comparison with advanced supervised models, set this work apart from previous studies. The Mean Absolute Error (MAE) of the best supervised model was 0.032 over 15 min and 0.034 over 30 min. The Balanced Accuracy Score (BAS) of the best semi-supervised model was 86%.

Development of Anomaly Detectors for HVAC Systems Using Machine Learning / Borda, Davide; Bergagio, Mattia; Amerio, Massimo; Masoero, Marco Carlo; Borchiellini, Romano; Papurello, Davide. - In: PROCESSES. - ISSN 2227-9717. - ELETTRONICO. - 11:2(2023), p. 535. [10.3390/pr11020535]

Development of Anomaly Detectors for HVAC Systems Using Machine Learning

Bergagio, Mattia;Amerio, Massimo;Masoero, Marco Carlo;Borchiellini, Romano;Papurello, Papurello
2023

Abstract

Faults and anomalous behavior affect the operation of Heating, Ventilation and Air Conditioning (HVAC) systems. This causes performance loss, energy waste, noncompliance with regulations and discomfort among occupants. To prevent damage, automated, fast identification of faults in HVAC systems is needed. Fault Detection and Diagnosis (FDD) techniques are very effective for these purposes. The best FDD methods, in terms of cost effectiveness and data exploitation, are based on process history; i.e., on sensor data from automation systems. In this work, supervised and semisupervised models were developed. Other than with regard to outdoor temperature and humidity, the input parameters of an HVAC system have few internal variables. Performance of traditional methods (e.g., VAR, Random Forest) is low, so Artificial Neural Networks (ANNs) were selected, since they can capture nonlinear relationships among features and are easily optimized. ANNs can detect simultaneous faults from different classes. ANN metrics are easily evaluated. The ground truth is obtained from process history (supervised case) and from a mix of deterministic methods and clustering (semi-supervised case). The derivation of the ground truth in the semi-supervised case, and extensive comparison with advanced supervised models, set this work apart from previous studies. The Mean Absolute Error (MAE) of the best supervised model was 0.032 over 15 min and 0.034 over 30 min. The Balanced Accuracy Score (BAS) of the best semi-supervised model was 86%.
2023
File in questo prodotto:
File Dimensione Formato  
processes-11-00535.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.05 MB
Formato Adobe PDF
4.05 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2975947