We show a result on propagation of the anisotropic Gelfand-Shilov wave front set for linear operators with Schwartz kernel which is a Gelfand-Shilov ultradistribution of Beurling type. This anisotropic wave front set is parametrized by two positive parameters relating the space and frequency variables. The anisotropic Gelfand-Shilov wave front set of the Schwartz kernel of the operator is assumed to satisfy a graph type criterion. The result is applied to a class of evolution equations that generalizes the Schrodinger equation for the free particle. The Laplacian is replaced by a partial differential operator defined by a symbol which is a polynomial with real coefficients and order at least two.

Propagation of anisotropic Gelfand–Shilov wave front sets / Wahlberg, P.. - In: JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS. - ISSN 1662-9981. - 14:1(2023). [10.1007/s11868-022-00502-6]

Propagation of anisotropic Gelfand–Shilov wave front sets

Wahlberg P.
2023

Abstract

We show a result on propagation of the anisotropic Gelfand-Shilov wave front set for linear operators with Schwartz kernel which is a Gelfand-Shilov ultradistribution of Beurling type. This anisotropic wave front set is parametrized by two positive parameters relating the space and frequency variables. The anisotropic Gelfand-Shilov wave front set of the Schwartz kernel of the operator is assumed to satisfy a graph type criterion. The result is applied to a class of evolution equations that generalizes the Schrodinger equation for the free particle. The Laplacian is replaced by a partial differential operator defined by a symbol which is a polynomial with real coefficients and order at least two.
File in questo prodotto:
File Dimensione Formato  
Propagation of anisotropic Gelfand–Shilov wave front sets.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 552.85 kB
Formato Adobe PDF
552.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
wahlberg2.pdf

Open Access dal 27/12/2023

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 416.33 kB
Formato Adobe PDF
416.33 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2974733