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PROPAGATION OF ANISOTROPIC GELFAND-SHILOV WAVE
FRONT SETS

PATRIK WAHLBERG

ABSTRACT. We show a result on propagation of the anisotropic Gelfand—Shilov wave
front set for linear operators with Schwartz kernel which is a Gelfand—Shilov ultradistri-
bution of Beurling type. This anisotropic wave front set is parametrized by two positive
parameters relating the space and frequency variables. The anisotropic Gelfand—Shilov
wave front set of the Schwartz kernel of the operator is assumed to satisfy a graph type
criterion. The result is applied to a class of evolution equations that generalizes the
Schrédinger equation for the free particle. The Laplacian is replaced by a partial dif-
ferential operator defined by a symbol which is a polynomial with real coefficients and
order at least two.

1. INTRODUCTION

The paper treats the anisotropic Gelfand—Shilov wave front set and its propagation
for a class of continuous linear operators.

The Gabor wave front set, introduced by Hérmander in 1991 [10], is a closed conic sub-
set of the phase space T*R%\ 0 that consists of globally singular directions of tempered
distributions. More precisely it records directions in 7*R%\ 0 in a conical neighbor-
hood of which the short-time Fourier transform of a tempered distribution does not
decay super-polynomially. It is empty precisely when the tempered distribution is a
Schwartz function, and thus it records local smoothness as well as rapid decay at infinity
comprehensively. These singularities thus merits the term global.

Several recent works [5,17,20,23,25] concern the Gabor wave front set and generaliza-
tions. In particular it has been shown to coincide with Nakamura’s homogeneous wave
front set [13,23]. Concerning propagation of singularities already the original paper [10]
treated the action of a linear continuous operator on the Gabor wave front set. In [17,25]
propagation of the Gabor wave front set for the solution operator to an evolution equa-
tion with quadratic Hamiltonian is studied. Then the singular space, introduced by
Hitrik and Pravda—Starov [8], plays a major role.

In [3] the Gabor wave front set is adapted to the functional framework of equal index
Gelfand—Shilov spaces of Beurling type and their dual ultradistribution spaces. This
means that the super-polynomial decay for the Gabor wave front set is replaced by super-
exponential decay with a subgaussian power parameter % < 2. A study of propagation
of this s-Gelfand—Shilov wave front set for evolution equations of quadratic type is also
contained in [3].
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2 P. WAHLBERG

In [21] the isotropic s-Gelfand—Shilov wave front set is generalized into an anisotropic
Gelfand—Shilov wave front set parametrized by two parameters ¢, s > 0 such that t+s >
1. The parameters relate the space and frequency variables. The anisotropic Gelfand—
Shilov wave front set is defined for Gelfand—Shilov ultradistributions of Beurling type
with decay index ¢ and regularity index s. The super-exponential decay along straight
lines in phase space T*R?\ 0 used for the isotropic Gelfand-Shilov wave front set is then
replaced by super-exponential decay along curves of the form

R, 3 A= (M, X%¢) e T*R\ 0

where (z,€) € T*R?\ 0. We call the resulting wave front set the anisotropic t, s-
Gelfand-Shilov wave front set. It is denoted WF"*(u) C T*R?\ 0 for a Gelfand-Shilov
ultradistribution u € (37) (R?). If t = s we recapture the s-Gelfand-Shilov wave front
set. In [21] microlocal analysis for the anisotropic ¢, s-Gelfand—Shilov wave front set is
developed. In particular a result on microlocality for pseudodifferential operators in the
anisotropic framework is shown, with a symbol class taken from [1]. These operators are
continuous on the Gelfand-Shilov space ¥{(R?) and extends to continuous operators on
(%5) (RY).

The following main result in this paper concerns propagation of the anisotropic t, s-
Gelfand-Shilov wave front set for a continuous linear operator .# : ¥3(R%) — (37) (R%)
defined by a Schwartz kernel K € (Xf)" (R24).

Suppose that the t, s-Gelfand—Shilov wave front set of K contains no point of the
form (z,0,£,0) € T*R?%\ 0 nor of the form (0,%,0, —n) € T*R??\ 0. (Loosely speaking
this means that WF®*(K) resembles the graph of an invertible matrix.) Then .# :
¥3(RY) — 2#(R?) is continuous, extends uniquely to a continuous linear operator % :
(29) (RY) — ()" (RY), and for u € (Xf)' (R?) we have

(1.1) WEFS (A u) C WE (K)o WF (u)
where
Ao B ={(x,6) €eR*: 3(y,n) € B: (w,y,§,—n) € A}

for A C T*R?? and B C T*R".

The inclusion (1.1) is conceptually similar to propagation results for other types of
wave front sets, local [9], or global [3,17,25].

As an application of the inclusion (1.1) we study propagation of the anisotropic t, s-
Gelfand wave front set for the initial value Cauchy problem for an evolution equation of
the form

ou(t, z) +ip(Dy)u(t,z) =0, z¢eRY
u(0,-) =g

where p : R — R is a polynomial with real coefficients of order m > 2. This generalizes
the Schrodinger equation for the free particle where m = 2 and p(¢) = |¢[%.
Provided s > ﬁ we show that WF*(m—=1):5 of the solution e~#P(P=)y at time t € R

equals WEFs(m—1)s (up) transported by the Hamilton flow y; with respect to the principal
part p,, of p, that is

(x(t)7§(t)) = Xt(an&)) = (1'0 + tvpm(50)7€0)a tc R, (x0,§0) S T*Rd \ 0.
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This conclusion is again conceptually similar to other results on propagation of sin-
gularities [3,9,25], and generalizes known results when p is a homogeneous quadratic
form [17].

We also show that the propagator e *P(Pz) for any t € R is continuous on ¥3(R%) for
any r,s > 0 such that » > s(m —1) > 1, using the criterion mentioned above on the r, s-
Gelfand—Shilov wave front set of the Schwartz kernel of the propagator. This technique
to prove continuity on Gelfand—Shilov spaces avoids direct estimates for seminorms, and
we hope it may be useful in other contexts.

Several ideas and techniques for our works on anisotropic global microlocal analysis
are borrowed from the literature on anisotropic local microlocal analysis (see e.g. [15]).
In these works the anisotropy refers mostly to the dual (frequency) variables only, for
fixed space variables, whereas our anisotropy refers to the space and frequency variables
comprehensively.

The article is organized as follows. Notations and definitions are collected in Section 2.
Section 3 treats a family of seminorms for Gelfand—Shilov spaces defined using the short-
time Fourier transform. Section 4 recalls the definition of the anisotropic t, s-Gelfand—
Shilov wave front set and a result on tensorization is proved. We devote Section 5 to a
proof of the main result on propagation of the anisotropic ¢, s-Gelfand—Shilov wave front
set for linear operators. In Section 6 we generalize [21, Theorem 4.2 (i)] and find an
inclusion for anisotropic Gelfand—Shilov wave front sets of multivariable chirp functions.
These are exponentials with real polynomial phase functions. Finally Section 7 treats
an application of our propagation result to a class of evolution equations of Schrédinger

type.

2. PRELIMINARIES

The unit sphere in R? is denoted S~ € R?. A ball of radius » > 0 centered in
z € R? is denoted B,(z), B,(0) = B,, and e; € R? is the vector of zeros except for
position j, 1 < j < d, where it is one. The transpose of a matrix A € R%*? is denoted
AT and the inverse transpose of A € GL(d,R) is A=1. We write f(z) < g(x) provided
there exists C' > 0 such that f(z) < Cg(x) for all  in the domain of f and of ¢g. If
f(z) < g(x) < f(x) then we write f =< g. We use the bracket (z) = (1 + ]a:|2)% for
r € R?. Peetre’s inequality with optimal constant [21, Lemma 2.1] is

[s]
(x +1y)° < <5§> (x>s<y)‘s‘ z,ye R seR.

The normalization of the Fourier transform is

-~ _d

Ff(&) = f(§) = (2m)2

for f € .(R?) (the Schwartz space), where (-, -) denotes the scalar product on R

The conjugate linear action of a (ultra-)distribution u on a test function ¢ is written

(u, ¢), consistent with the L? inner product (-, -) = (-, -)z2 which is conjugate linear
in the second argument. ‘

Denote translation by T, f(y) = f(y — «) and modulation by M¢f(y) = v £ (y) for

z,y, & € R where f is a function or distribution defined on R¢. The composed operator

f(x)e 8 da, ¢ eRY
RA
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is denoted I(z,£) = M¢T,. Let ¢ € #(R%)\ {0}. The short-time Fourier transform
(STFT) of a tempered distribution u € .#/(R?) is defined by

Vou(e,€) = (27) % (u, MeThp) = F (uTop)(€), & € RY

Then V,u is smooth and polynomially bounded [7, Theorem 11.2.3], that is there exists
k > 0 such that

(2.1) Vou(z, )| < {(2,€)", (2,€) € T*R™
We have u € . (R?) if and only if
(2:2) Vou(z, ) S ((@,0))7N, (2,¢) e T*"R?, YN >0.
The inverse transform is given by
(2.3) u=(27)"% / / Vou(z, )M Ty da dé
R2d
provided ||¢||z2 = 1, with action under the integral understood, that is
(2.4) (us f) = (Viou, Vo f) 12 (m29)

for u € ./ (R%) and f € .7(R%), cf. [7, Theorem 11.2.5].

2.1. Spaces of functions and ultradistributions. In this paper we work with Beurl-
ing type Gelfand—Shilov spaces and their dual ultradistribution spaces [6].
Let s,t,h > 0. The space denoted Sih(Rd) is the set of all f € C*°(R?) such that

22D f ()]

(2.5) 1fllss, = sup hlatBlolt Bls

is finite, where the supremum is taken over all ., 3 € N and « € R%. The function space
S/, is a Banach space which increases with h, s and ¢, and S}, € .. The topological

dual ( 1f’h)’(Rd) is a Banach space such that .7/(R%) C (S;h)’(Rd).
The Beurling type Gelfand-Shilov space ¥3(R%) is the projective limit of Sih(Rd)
with respect to h [6]. This means
(2.6) 2j(RY) = () Siu(RY)
h>0
and the Fréchet space topology of ¥3(RY) is defined by the seminorms || - || ss, for h > 0.

We have ¥ (R9) # {0} if and only if s +¢ > 1 [16]. The topological dual of ¥;(R9)
is the space of (Beurling type) Gelfand-Shilov ultradistributions [6, Section 1.4.3]

(2.6)' (28R = J (S8 RY).
h>0
The dual space (35)’ (Rd) may be equipped with several topologies: the weak™ topol-
ogy, the strong topology, the Mackey topology, and the topology defined by the union
(2.6)" as an inductive limit topology [24]. The latter topology is the strongest such that
the inclusion (S7),)’ (RY) C (35)(R?) is continuous for all h > 0. We use the weak*

topology on (X3)(R%) in this paper.
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The Roumieu type Gelfand—Shilov space is the union

SR = | sia®)

h>0
equipped with the inductive limit topology [24], that is the strongest topology such that
each inclusion S L(RY) C SF(R?) is continuous. Then Sf(RY) # {0} if and only if
s+t > 1 [6]. The corresponding (Roumieu type) Gelfand—Shilov ultradistribution space
is

(SR = (N (Sen) (RY.
h>0

For every s,t > 0 such that s +¢ > 1, and for any € > 0 we have
S (RY) € S7(R) € BiTE(RY).

We will not use the Roumieu type spaces in this article but mention them as a service
to a reader interested in a wider context.

We write ¥3(RY) = ¥4(RY) and (X2)'(R?) = ¥/ (R?). Then X4(R?) # {0} if and only
if s > %

The Gelfand—Shilov (ultradistribution) spaces enjoy invariance properties, with re-
spect to translation, dilation, tensorization, coordinate transformation and (partial)
Fourier transformation. The Fourier transform extends uniquely to homeomorphisms
on .’ (R%), from (S§)(R?) to (SY)(R?), and from (35) (R?) to (2%)(R?), and restricts
to homeomorphisms on .7 (R9), from Sf(R%) to S{(RY), and from X (R?) to XL(RY),
and to a unitary operator on L?(R4).

Let u € (23)(RY) with s +¢ > 1. If ¢ € 3(R9) \ 0 then

1 1
(2.7) [Vyu(z,€)| < er (T +[€]%)

for some r > 0, and u € ¥{(R?) if and only if

1 1
(2.8) Vyu(z, )| S e~ (el T+Igls)

for all 7 > 0. See e.g. [26, Theorems 2.4 and 2.5]. If u € (X3)(R%), f € Z§(RY),
¢ € ¥3(RY) and ||| z2 = 1 then (2.4) holds true.
Working with Gelfand—-Shilov spaces we will often use the inequality (cf. [1])
w40l <nls(als +lyl5), my R s >0,

where

1 if 0<t<1
”(t>:{2t—1 it t>1 0

which implies

eyl (s~)rlals or(s~1)rlyls d
Ty L el T RS T ey e RY, >0
(2.9) N

-1 S — % -1 %
e (sl HuE < rlal T ns T e REL s (),

I
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We will use the following estimate based on |a|! < aldl®l for o € N? [14, Eq. (0.3.3)].
For any s > 0, h > 0 and any o € N¢ we have

s

|a
— el ® dh~s
(210) a!75h7|a‘ = <h i ) < u g 6sdh7§'

al |a|!

=

3. SEMINORMS ON BEURLING TYPE GELFAND—SHILOV SPACES

We need the following result on seminorms in the space ¥(R%) when t + s > 1. The
result appears implicitly in the literature (cf. [26, Theorem 2.4]) but we give a detailed
proof as a service to the reader.

Lemma 3.1. Let t,s > 0 satisfy t +s > 1, and let o € (R \ 0. The collection of
SemInorms

1 1
(3.1) SR 5 for s ) ) v s,
(z,£)eR2

defines the same topology on X3 (R?) as does the collection of seminorms (2.5) for h > 0.

Proof. Due to the continuity of the Fourier transform .% : ¥3(RY) — XL (R?) we have:
For every hy > 0 there exists hy > 0 such that for f € %5 (R9)

(3.2) 1ls:, S Iflss,,

Set forr >0

1
1f Il = Sup, e f ()|
e

and for p € X§(R?)\ 0

1 1
1= sup )y p g,
(:c,f)ede

We start by showing

(3.3) Vr>03h>0: |f

L Il S U fllsz, £ e iR,
Using

lz|"™ < ds ‘m|ax |z, x € R4,
al=n
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we obtain for f € ¥§(R%), for any r > 0 and any h > 0,

ittt gt = (et ) )

n=0

o+ =

1
IS ”f”éts’}“ HANS Rda
provided h = h(r,t,d) > 0 is sufficiently small. This shows
Vr>03h>0: [[fli, < |flls;,-

As a byproduct, since f € ¥!(R%), this gives using (3.2) the following conclusion. If
f € 2(R%) and r > 0 then there exist hy, hy > 0 such that

~

£ + 11

We have proved (3.3).

Next we show the opposite estimate, that is

r S Wz, + 1 lse, S 11l

(3.4) Vh>03r>0: |fllss, SIFlLe +1FI.  feZi(RY).

th ™

The argument is quite long. It resembles the proof of [14, Theorem 6.1.6]. For complete-
ness’ sake we give the details.
First we deduce two estimates that are needed. From (3.3) it follows that | f|;, < oo

and ||]?H;T < oo for any r > 0 when f € ¥§(R%). Thus for any r > 0 we have

1
t

PRSI (5)" = et @l < (7l,)E e R
n=0 ’

n

which gives the estimate

. t tn
1@ < WAl (£)  weRL nen.

and further

o dt tlel
e f@l <l (T) . weRh aene
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Finally we take the L? norm and estimate for an integer k > d/4 with ¢ = 4k —d > 0:

d+e
[2%fllr2 S sup () 2 |2%f(x)| S sup |27 f(a)]
reR4 z€RI, |y|<2k

tla+|
(35) < I lnl(a + 7)) (dt)

g
2dt 1!
Sl (%) et

using (o + 7)! < 21ty (cf. [14]) and considering k a fixed parameter.
From (3.5), || f|%, < oo for any 7 > 0, and Parseval’s theorem we obtain

r

N N d 18]
(3.6) HDﬁfHLz:uéﬁfuLzs\fug,w(z ) . Bent

We now start to prove (3.4). It suffices to assume 0 < h < 1. We have for o, 3 € N¢
arbitrary and f € ¥ (R?), using the Cauchy-Schwarz inequality, Parseval’s theorem and
the Leibniz rule

|0 DP f(x)| = (2m) "%

[ D ag) < 1) D
Rd

< V(DB
37 S max 107 (@ D f)l|z»

Y[« - - d
< max |z~ DB+ , c R%.
sm X (0)(0)un s, @

p<min(a) MM

In the next intermediate step we rewrite the expression for the L? norm squared using
integration by parts and estimate it as

[y el
- ‘(Db’ﬂfuf’ mQ(aw)Dﬁﬂfuf”
= |(/, Dﬁ+v—u(x2(a—u)Dﬂ+v—uf))‘
Z (B +v - ,LL> <2(Oé - M)) K:!|(x2(a—/,l4)—lif7 D2(6+7—u)—ﬁf)’
K

K
w<min(B+y—p,2(a—p))

< )3 (B - “) (2(“ - ‘”) Rl 205 | [ DHETI R f)
K

w<min(B+y—p,2(a—p)) "

N

Set 0 = max(¢,s), 7 = min(¢,s) and note that for § > 0 we have by (2.10) for any
r>0

20|k
_ 2dT
K170 < Cysirt,s <) , KE N
T
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From (3.5), (3.6) and k! = k!**579 where § =t + 5 — 1 > 0, we get if r > 2do

(e Ml

27|a+B+y—24
< 2lothl <2da>
T

~ 2dr\ ~2Ml
TP S TES

w<min(B4+y—p,2(a—p))

< (20— )~ W 2B+~ )~ )
r - o 27|a+B| =R - —20|K|
s () () A, Y e (B

w<min(B+y—p,2(a—p))

x ((2(a = )N (28 + 7 = w))?
r o o 27|a+5| N
S I - B /AT P DR (CCR DU e itG

" w<min(B4—1.2(c—p)
. 27 o+ L .
< Gy 240t <r> A 1Lf (s (20 = )))7(2(8 + v = w)!)*.
We insert this into (3.7) which gives, using p! < p!*™* and

(2> — )t < 2% ((a — p)1)?,

|a* D f ()]

T|a+-B|
< 92la+f] <2da> (”ﬂ
T
1

2do \ Tl NS o
< 9(2+t+s)|at+p| / 12 1t Qs
<2 (%29) () ma X ()ae

<2k
& p<min(a,y) K

sirys (2do\T\ T / A d d
(2 (20) ) amsr (sl + 171, weRY apeNt

;,rnﬂr;m)% max ) (”) (“)um(a DLHCEEMINE

<2k
o] Ji<min(a,y) IIYANE

Given 0 < h < 1 we may pick r > 2do such that

J, — 93+t+s <2d‘7>T '
r

This finally proves (3.4).
Next we use (3.3) in order to prove

(3.8) ¥r>03h>0: |fIY S Ifls;,, f€ZIRY.
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Let » > 0 and ¢ € ¥3(R%)\ 0, and set x = max(k(t~1), x(s7!)). Then (2.8) and (2.9)
give for f € ¥3(RY)

~

Vi o, 6)| = | FER(O1 5 1L T30 = [ 1F(€ =~ mlI@-mldy

~ 1 ,
) -2 —nls =3 s
5 ||f||{9,27"/i||§0 {9,37’5/ e Tl il d77
Rd
7l arle|s (2—3)rkln|
— 5 3V rklnl 3
5 ||f||$,2'r’;~c6 / & n dn
Rd

~ 1
5 ||f||/s,2rn 672T‘£|S7 a:,& € Rd‘

From this estimate and |V, f(z,&)| = |V f(§, —x)| we also obtain

1
Vel ()| S IF [l zrne™ ™", 2,6 e RY
We may conclude

1 1 1 1

2r(|x| T +|€|s rle| rl€ls
) pa, ) = 1 |V, f(a, )] 19V, f(a, )]

5 ||f||:5,27“n Hf”{s,an
which gives

1
~ 5 ~
LA S (0 e 17z )™ S U1 2+ 1P 2

Combining with (3.3) we have proved (3.8).
It remains to prove

(3.9) Vh>03r>0: [|fls;, SV, feZiRY,

which we do by means of (3.4).
We use the strong version of the STFT inversion formula (2.3) and its Fourier trans-
form, that is

(3.10) f(z) = (2m)

[S]ISW

/ chf(yﬂ])MnTySO(x) dy dn,
R2d

e,

(311) Fle) = )t [ VST, M 20 dy

where f € ¥(R%) and ¢ € ¥3(RY) satisfies ||| 2 = 1.
Set again k = max(x(t~!), x(s71)). From (3.3) and (3.10) we obtain for any r > 0

1 1
@IS [ Vel e o =yl dyds
1 1 1 1
S e G P e

< " —2rm(|y|%+|n\%) rn|y|%
~ HfH2rn € € dyd%
R2d

SIfNsm: = €RY
which gives HfHQT S £l

~ 2rk*
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From (3.11) we obtain for any r > 0

RIS [ Warl e (5 ) dy
R2d

2rk

< I —2rn(|y|%+\77|%) rlé]s —rale—n|s
ST ‘ v

SIf1zw: € €RY

2rK

which gives || f[[, < [[fllgrs- Thus [[fll;, + £l S [1f]l2 so combining with (3.4) we
have proved (3.9).

Finally we note that the seminorms {||f||/, » > 0} are equivalent to the same family
of seminorms when the window function ¢ € 35(R9) \ 0 is replaced by another function

Y € 2¢(R?) \ 0. Indeed this is an immediate consequence of (3.8) and (3.9). O

4. ANISOTROPIC GELFAND—SHILOV WAVE FRONT SETS

4.1. s-conic subsets. For s > 0 we use subsets of T*R%\ 0 that are s-conic, that is
subsets closed under the operation T*R%\ 0 3 (z,€) +— (Az, \*¢) for all A > 0. Thus
1-conic is the same as the usual definition of conic.

Let t, s > 0 be fixed. We need the following simplified version of a tool taken from [15]
and its references. Given (z,¢) € R??\ 0 there is a unique A = A(z,£) = M\ s(2,&) > 0
such that

A, €[l + A, ) [¢]* = 1.

Then (z,€) € S2?~1 if and only if A(x,&) = 1. By the implicit function theorem the
function A : R?¢\ 0 — R,y is smooth [12].

If u >0 and (x,€) € 82971 then \(utw, u*¢) = pu = pA(x,€). In fact
(4.1) Ap'z, p€) = pA(z,€)
holds for any (z, &) € R?¥\ 0 and x > 0 by the following argument. Given (z,¢) € R??\0
set w1 = Az, ) so that (x/ul,&/us) € S2¢=1. Then for u >0

Mp'e, po€) = M(up) e/, (ppn)*€/ui) = ppa = pA(,6).

The projection p(z,&) = pis(z,&) of (x,€) € R??\ 0 along the curve Ry > u —
(pta, p5€) onto S29~1 is defined as
(4.2) &) = (Mx.8) "z, Az, %), (.6) e R*\0.

Then p(ptz, p*¢) = p(z, &) does not depend on > 0. The function p : R??\ 0 — S2¢-1
is smooth since A € C*®°(R2?\ 0) and \(x, &) > 0 for all (z,£) € R*\ 0.

1
t

Note that A\ s(z, &) = )\13(1‘,5) , and thus p; ¢(x,&) = pl’g(w,ﬁ) depends only on ¥.
From [15], or by straightforward arguments, we have the bounds
2l +1€[F SA@,©) Slalt +[els, (@.6) e R*\0,
and
((, g)ymin(ha) min(10) 14 A(@,€) S ((, &)yt mx(lD) - (z,6) € R\ 0.
We will use two types of s-conic neighborhoods. The first type is defined as follows.
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Definition 4.1. Suppose s,¢ > 0 and zp € S??~!. Then
Tsze = {(2,€) € R\ 0, |20 — prs(@, §)| < e} S TR\ 0.

We write I',, . = I's ;. when s is fixed and understood from the context. If e > 2
then I',, . = T*R%\ 0 so we usually restrict to ¢ < 2.
The second type of s-conic neighborhood is defined as follows.

Definition 4.2. Suppose s, > 0 and (g, &) € S?*~1. Then

f($07€0)75 = fs,(:z:o,go),a = {(y777) € R2d \ 0: (y777) = ()\(.%'0 + x)a )‘8(50 + 5)7 A > 07 ({L‘,f) € BE}
={(y,m) € R*\0: 3In>0: (Ay, X*n) € (20, &) + Be}.

By [22, Lemma 3.7] the two types of s-conic neighborhoods are equivalent. This means
that if zg € 829~ then for each ¢ > 0 there exists § > 0 such that Iyys € Tzpe and
FZQ,6 g FZQ,E'

4.2. Anisotropic Gelfand—Shilov wave front sets. For u € (X7)'(R%) the t,s-
Gelfand-Shilov wave front set WF®*(u) was defined in [21] as a closed subset of the
phase space T*R%\ 0 as follows.

Definition 4.3. Let s,¢ > 0 satisfy s +¢ > 1, and suppose ¢ € X5(R%) \ 0 and
u € (35)(R?). Then (zg,&) € T*R?\ 0 satisfies (xg,&) ¢ WF(u) if there exists an
open set U C T*R?\ 0 containing (o, &) such that
(4.3) sup  e"MVyu(Na, X5€)| < 0o, Vr > 0.

AS0, (z,6)eU

Due to (2.7) it is clear that it suffices to check (4.3) for A > L where L > 0 can be
arbitrarily large, for each r > 0.

A consequence of Definition 4.3 is that WF"*(u) is an £-conic closed subset of T*R\0.
Ift = s> 1 and ue S (R?) then WF**(u) = WF*(u), so we recapture the s-Gelfand-
Shilov wave front set WF*(u) (which is a slightly modified version of Cappiello’s and
Schulz’s [4, Definition 2.1]), as defined originally in [3, Definition 4.1]:

Definition 4.4. Let s > 1/2, ¢ € Y,(R%) \ 0 and u € ¥,(R%). Then z € T*R%\ 0
satisfies zg ¢ WF®(u) if there exists an open conic set T',, € T*R?\ 0 containing zy such
that )

sup e"l#l* [Vpu(z)| < oo, Vr>0.

z€l'z,

In Definition 4.3 we ask for exponential decay with arbitrary parameter r > 0 (super-
exponential) of V,u along the curve C, ¢ € T*R? defined by Ry 3 A — (Alz, A*€) which
passes through (z,¢) € U € T*R?\ 0. This power type curve reduces to a straight line if
t = s. By (2.7) a generic point (z,£) € T*R?\ 0 has an exponential growth upper bound
along the curve Cy¢. Due to (2.8) we have WF"*(u) = () if and only if u € Z;(R%).
Thus WF®$(u) € T*R%\ 0 can be seen as a measure of singularities of u € (Xf)'(R%):
It records the phase space points (z,£) € T*R?\ 0 such that Vyu does not decay super-
exponentially along the curve C, ¢, that is, does not behave like an element in X} (RY)
there.
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The t, s-Gelfand—Shilov wave front set is related to the anisotropic Gabor wave front
set [22,27] where the functional framework is the Schwartz space and tempered distribu-
tions, and the decay and growth in phase space are polynomial rather than exponential.

By [21, Proposition 3.5], Definition 4.3 does not depend on the window function
Y€ B3R\ 0. If u(z) = u(—z) then

(4.4) Viu(z, &) = Vyu(—z, —¢€).
If uw is even or odd we thus have the following symmetry:

(4.5) =+u = WF"(u) = -WF"(u).

¢

We also have
(4.6 V(. €) = Vyule, —6).

By [21, Remark 3.4] we have WFP*P(y) C WF*S(u) if p > 1, t+s > 1 and u €
CYRY.

If (y,m) € L's (29,0),c for 0 <& <1 then for some A > 0 and (z,€) € B. we have

(y,m) = (N(xo+x), A\¥(£0+&)). Thus ]y\%—i—\n\% = A, which gives the following equivalent
criterion to the condition (4.3) in Definition 4.3. The point (x9,&) € S?¢~! satisfies
(w0, &0) ¢ WEFS*(u) if and only if for some ¢ > 0 we have

1.1
(4.7) sup eT<|z|t+|g|s)\V¢u(az,§)| < 400 Vr>0.
(xrg)el_‘%,(zo,go),s

We will use the following result on the anisotropic Gelfand—Shilov wave front set of a
tensor product. Here we use the notation z = (z/,z") € R"™*™" 2/ € R™, 2" € R".

Proposition 4.5. Ift,s >0, t+s> 1, u € (%) (R™), and v € (35) (R") then
WEF* (u @ v) C ((WF>*(u) U {0}) x (WE"*(v) U{0})) \ 0
= {(2,&) e T*R™™\ 0: (2/,¢) € WF"(u) U {0}, (2”,&") € WF"*(v) U {0}}\ 0.

Proof. Let ¢ € 33(R™)\ 0 and ¢ € XF(R"™) \ 0. Suppose (zg, &) € T*R™™\ 0 does
not belong to the set on the right hand side. Then either (zf,&)) ¢ WF>*(u) U {0} or
(2, &) ¢ WF(v)U{0}. For reasons of symmetry we may assume (xf, &) ¢ WF* (u)U

{0}

Thus there exists € > 0 such that

sup e Vou(Na! A < oo Vr > 0.
(Il7€l)€(‘r6756)+B57 A>0

Let (2/,&) € (z(,&) + Be, (2",£") € (2(,&)) + Be, let r > 0 be arbitrary, and let
A > 1. We obtain using (2.7), for some r; > 0

M Vogpu @ v(\a, X5€)| = e Vou(Na!, A¢)| [Vgu(Aa”, X¢")|
< MMV u(Ma!, A€ < oo

It follows that (zg, &) € WF"*(u ® v). O
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5. PROPAGATION OF ANISOTROPIC GELFAND—SHILOV WAVE FRONT SETS
Let t,s > 0 and ¢t + s > 1. Define for K € (X¢)" (R??)

WFY(K) = {(z,€) €e TR : (x,0,£,0) € WFH(K)} € T*R?\ 0,
WF5*(K) = {(y,n) € T*R*: (0,y,0,—n) € WF"*(K)} C T*R%\ 0.
We will use the assumption
(5.1) WFY(K) = WFS*(K) = 0.

It is clear that if (5.1) holds for K € (X3)' (R??) then WFP*(K) = WFP*P(K) = ()
if K € (Ef}’,’)/ (R24), for any p > 1.

The following lemma is an $-conic version of [3, Lemma 6.1] which treats the isotropic

Gelfand—-Shilov wave front set.

Lemma 5.1. Ift,s > 0, K € (X) (R?%) and (5.1) holds, then there exists ¢ > 1 such
that
(5.2)

WE(K) € Ty o= {(@9,6m) € TR s e (ol +16l) < lol? +Jnl* < e (Jol +1¢l*) }-
Proof. Suppose
WFS(K) € { (2,9.6m) € TR : [yt +[nf? <e(Jo]t +1¢1%) |

does not hold for any ¢ > 0. Then for each n € N there exists (2, Yn, &n, 7n) € WFH(K)
such that

1
s

1 1 1
(5.3) vl + [l > (|2l + lal*) -
By rescaling (2, Yn, &n, ) as

(s Yns Ensin) — (/\tmm )\tym A¥En, A5

we obtain for a unique A = A(Zn, Yn,En,Mn) > 0 a vector in S%9~1 [22]. This Z-conic
rescaling leaves (5.3) invariant. Abusing notation we still denote the rescaled vector
(s Yos ey 1) € WES(K) 1 §341.

From (5.3) it follows that (z,,&,) — 0 as n — oo. Passing to a subsequence (without
change of notation) and using the closedness of WF"*(K) gives

(iﬂn,yn,fmnn) — (Ovyvovn) € WFt,S(K)a n— 0,

for some (y,7) € 241, This implies (y, —n) € WF5*(K) which contradicts the assump-
tion (5.1).
Similarly one shows

" 1 1 1 1
WES(K) € { (@,9,6,m) € TR ¢ [l + 1] < (yl? + nl*) }

for some ¢ > 0 using WF%*(K) = (. O
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The set 'y € R*\ 0 in (5.2) is open, and 7-conic in the sense that it is closed with
respect to (z,y,&,m) — (A (z,y), A*(,n)) for any A > 0. Hence (R \T) is 2-conic
and (R*\ T';) N S*~1 is compact. From (4.7) we then obtain if ® € X§(R2?)\ 0

1

1
(54) VoK (w,y.¢,—n)| < e "(EHEDE) o0 4y ¢ —n) e R9\ T,

A kernel K € (35) (R??) defines a continuous linear map .# : ¥3(RY) — (¥5) (R9)
by

(5.5) (£ f.9)=(K,g®f), f.gecZi(RY.

The following result says that (5.1) implies continuity of .#" on ¥7(R?) and admits
a unique extension to a continuous operator on (¥7)'(R%). This is the basis for the
forthcoming result on propagation of the t, s-Gelfand—Shilov wave front sets Theorem
5.5. In the proof we use the conventional notation (cf. [10,11]) for the reflection operator
in the fourth RY coordinate in R*¢

(5.6) (z,y.6,m) = (v,9,€,-n), =,y,&n€eRL

Proposition 5.2. Let t,s > 0 satisfy t +s > 1, and let # : $3(RY) — (Z3)" (R?) be
the continuous linear operator (5.5) defined by the Schwartz kernel K € (33) (R24). If
(5.1) holds then
(i) o : 2R — 25(RY) is continuous;
(ii) 2 extends uniquely to a continuous linear operator % : (35) (RY) — (23) (RY);
(i) if ¢ € SHRY), ol e = 1, ® = 9@ € SHRM), u e (%) (R and v € SH(RAD),
then

60 )= [ VaKGn6—n) Voi(8 Vauly.n) de dy dé .

Proof. By [25, Lemma 5.1] the formula (5.7) holds for u, 1 € ¥5(R%).
Let ¢ € X3 (RY) satisfy ||| z2 = 1 and set ® = ¢ ® p € ¥5(R??). Since

VoIl(z,&)p(y,n) = W19V, o(z — y, & — 1)

we get from (5.7) for u € ¥ (R?) and (z,¢) € T*R?

Vo (Hu)(z,€) = 2m) 72 (Hu, T(z, )
(5.8)

= n) [ OV R (g2 —0) Voo = . = 1) V(2. 0) dy s d .
This gives

(5.9) Vo (Hu)(z, O < /RM VoK (y, 2,0, —0)| [Vep(z—y, E—n)| [Vpu(z, 0)| dy dz dn d6.
We use the seminorms (3.1), denoted || - ||/ for » > 0 as in the proof of Lemma 3.1.

Let r > 0, set x = max(x(t 1), x(s7!)), and consider first the right hand side integral of
(5.9) over (y,z,n, —0) € R*\ 'y where Ty is defined by (5.2) with ¢ > 1 chosen so that
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WF»*(K) C T';. By Lemma 5.1 we may use the estimates (5.4). Using (2.8) and (2.9)
we obtain for any r; > 0

/]‘{461\{‘/ ‘V@K(ya Z, 1, _9)| ‘V¢7§0(‘r - yaé - 77)| ‘VW(Zv 0)’ dy dz dT/ dé
1

1 1 1 1
S / 6—7'1 (|(y,z)\ t4[(n,0)] S) 6_T5(|$_y| t +|§_77|S> ‘V@U(Z’, 0)| dy dz d?] de
(5.10) R4A\T

1 1 1 1
< Jufy (el +e17) /RM ) (10 @A) 4 g e ap

1 1
—r(lolt +igl ¥
< Julpy o (7 HE°)

provided r1 > rk.

Next we consider the right hand side integral (5.9) over (y,z,n,—0) € I'1. Then we
may by Lemma 5.1 use (5.2). Using (2.7) and (2.8) we obtain for some r; > 0 and any
r9 >0
(5.11)

[ Vo w00 Vgl = .6 = ) Vpulz, )] dy =y
1

/
1

1 1 1 1 1 1 1 1
< . er(x|t+|ss)/ e (T H@ONT) ra(lwlF+nl= ) =ra(I=17+017) g 4, ge ap
A e—r(mﬁﬂsi)/ (1@ @A) i+ Dn (It 121+l 4017 )

1

(T’K',C—T’g)(|z‘%+|9|%)

X e dxdydédn

1 1 1 1 1 1
< Jull”. er(x|t+|£s)/ ¢ (12T @) (e Ds(iryrrme—ra) (ETHO) g0 ) e 4p

1

" |t S
5 ||u”’lz

provided ry > 0 is sufficiently large.
Combining (5.10) and (5.11) we obtain from (5.9) || u[|;’ < ||ull;,, which proves claim
(i)

To show claims (ii) and (iii) let v € (X7)" (R?) and set for n € N

d
2

up = (27)" / Viou(y, mIL(y, n)e dy dn.
[(y,m)|<n
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Let r > 0. From (2.7) and (2.8) we obtain for some r; > 0

1 1 1 1
67’(|1‘\t+|§‘ )‘Vapun(l"g)’ 5 /( . \un(y,nﬂe (|$|t+|§| ) |V¢¢(x_y7é‘_77)|dyd77
y,n)isn

< / (et (it erh) (-t leontt) g o)
= Jiwaml<n

1 1 1 1
< / o (Wl )l Fnle) g g,
I(y.m)I<n

<Copr,  (,6) € R

It follows that u, € ¥3(RY) for n € N.

The fact that u, — u in (X)(R?%) as n — oo is a consequence of (2.4), (2.7), (2.8)
and dominated convergence.
We also need the estimate (cf. [7, Eq. (11.29)])

_d
Vaun(y,m)| < (2m)72 Vol * [Vapl(y,m), - (y,m) € R*,
which in view of (2.7) and (2.8) gives the bound

1 1
(5.12) Voun(ysm)| < FFD (W) e R2 e,

for some r; > 0, that holds uniformly over n € N.

We are now in a position to assemble the arguments into a proof of formula (5.7) for

€ (X5)(RY) and ¢ € 35(R%). Set
(5.13)
(K u, ) = lim (A up,) = lim VoK (x,y,&,—n) Voo (x, ) Vun(y,n) de dy d€ dn.

n—00 n—oo JR4d

We have Vzun,(y,n) — Vzu(y,n) as n — oo for all (y,n) € R?*®. In order to show
that the right hand side of (5.13) is well defined and (5.7) holds, it thus suffices by
dominated convergence to show that the modulus of the integrand in (5.13) is bounded
by an integrable function that does not depend on n € N.

Consider first the right hand side integral (5.13) over (x,%,&, —n) € R\ T'; where
I'; is defined by (5.2) with ¢ > 1 again chosen so that WF"»*(K) C I';. By Lemma 5.1
we may use the estimates (5.4). Using (5.12) we obtain for any ro > 0

/ Vo (2, €, —n)| Vit (2, €] Vst (y, )| dae dy dé iy
R4d\F'1

t 1 11
- < /RM\F/ o2 (1@l +Em! ) V(e 6)] ) (14l =) g dyde d
’ 1

1 1
<l ((1+r1)=r2) ()] T+ Em)] ) d
Stoll [ e i dy e
S ¢llg < o0

provided 7y > k(1 +r7).
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Next we consider the right hand side integral (5.13) over (z,y,&,—n) € I'1. Then we
may by Lemma 5.1 use (5.2). From (2.7) and again (5.12) we obtain for some r9 > 0
(5.15)

[ IV =) Vi, )] Voo )] e dy iy

1 1
5/ 2 (@it +En) )|V oz, €)] OO EH7) 4 40 e an
F/

1

< / (@) T+En)
F/

1

3) grire) (ol F -yl -+l il S )+ (14 (11 -+l ) V(e )] der dy d€ dy

. / (I FHEDIT) (r(14r2) () +r(14+r)) (Jal F+el) Vipb(z, €)] da dy d€ dn
X # ’

~ Han( ]_—|-r2 1+C)+(1+T1)C) < Q.

The estimates (5.14) and (5.15) prove our claim that the modulus of the integrand in
right hand side of (5.13) is bounded by an L'(R*?) function uniformly over N € N.
Thus (5.13) extends the domain of .# from X§(R?) to (25) (RY). We have shown claim
(ii).

From (5.14) and (5.15) we also see that .#u extended to the domain u € (X5) (R9)
satisfies #u € (X5) (R?). To prove claim (ii) it remains to show the continuity of the
extension (5.13) on (¥27)’ (R%). The uniqueness of the extension is a consequence of the
continuity.

Let (u,)22; C (Xf)" (RY) be a sequence such that u, — 0 in () (RY) as n — oo.
Then Vpu,(y, 77) — 0 as n — oo for all (y,n) € R?*. By the Banach-Steinhaus theorem
[18, Theorem V.7], (u,)52, is equicontinuous. This means that there exists r > 0 such
that

1 1
() S ol = sup ) ua e), wesiRY), neN.
(z,£)eR24

Hence

Vo) = ()0 Ty 2 S s & (T4 ) 1y 11y, ), €)
z,6)eR24

r(I2lt el )
= sup e Vo(z —y,& —n)

(z,£)eR?

101 1 1 101

< sup o (alFHler) (ot rlenl ) o rn(wiF ) oy g2

()R
uniformly for all n € N. From (5.7), the estimates (5.14), (5.15), and dominated con-
vergence it follows that (¢ uy,,1) — 0 as n — oo for all ¢ € ¥3(R9), that is # u, — 0
n (¥5) (RY). This finally proves claim (ii). O

Now we start to prepare for the main result Theorem 5.5. We will use the relation
mapping between a subset A C X x Y of the Cartesian product of two sets X, Y, and



PROPAGATION OF ANISOTROPIC GELFAND-SHILOV WAVE FRONT SETS 19

a subset BCY,
AoB={zxeX:3JyeB: (r,y) € A} C X.
When X =Y = R2¢ we use the convention
A'oB={(z,¢) eR*: 3(y,n) € B: (v,y,&—n) € A}.

Note that we use (5.6), and there is a swap of the second and third variables.
If we denote by

p173(x,y,§,77) = (xug)v
po—a(z,y,&,m) = (y,—n), =,y,&n€RY,

the projections R* — R2? onto the first and the third R% coordinate, and onto the
second and the fourth R¢ coordinate with a change of sign in the latter, respectively,
then we may write

(5.16) WFS(K) o WF (u) = py.3 (WF“(K) Npy L WFt’S(u)> .

Lemma 5.3. Ift,s >0, t+s> 1, K € (%3) (R?®), (5.1) holds and u € (X5)' (R?) then
WEHS(K) o WE (1) € T*R?\ 0

is 2-conic and closed in T*R\ 0.

Proof. Let (x,&) € WF"$(K) o WE"*(u). Then there exists (y,1) € WF>*(u) such that
(1"’ Y, 57 _77) € WFt’S(K)‘

Let A > 0. Since WF"*(K) and WF"*(u) are $-conic we have (Az, Ay, \*¢, —\*n) €
WEFL(K) and (Afy, A*n) € WEFS(u). Tt follows that (A\'z, \*¢) € WFYS(K) o WFS(u)
which shows that WF"*(K)" o WF"*(u) is £-conic.

Next we assume that (z,,&,) € WFY(K) o WEYS(u) for n € N and (z,,&,) —
(,€) # 0 as n — +oo. For each n € N there exists (yn,7,) € WF"*(u) such that
(mna Yn> Ens _nn) € WFt’s(K)~

Since the sequence {(z,,&n)n} € T*RY is bounded it follows from Lemma 5.1 that
also the sequence {(yYn,7n)n} € T*R% is bounded. Passing to a subsequence (without
change of notation) we get convergence

lim (l’n, Yn, 5717 _7771) = (:E7 Y, ga _77) € R4d \ 0.

n—-+00
Here (z,y,&,—n) € WFY(K) since WFH(K) € T*R2?\ 0 is closed, and (y,n) # 0
due to the assumption WF%*(K) = (. Since WF»(u) € T*R%\ 0 is closed we have
(y,m) € WF**(u). We have proved that (z,¢) € WF**(K)" o WF"*(u) which shows that
WEFHS(K) o WE(u) is closed in T*R?\ 0. O

Let s > 0, let G C T*R? \ 0 be a closed s-conic subset, and let € > 0. In the next
result we use the notation

— *Rd . ; _
(5.17) Ige.={z€T"R*\0: weGlrIWISfM*l Ip1,s(2) —w| < e}

This generalizes Definition 4.1 since I'gc = ') if G = {(Az0, A*&o) € T*R*\ 0 :
A > 0} and (20, &) € S??~1. Note that I is an open s-conic set, and G C I'g .
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Lemma 5.4. Suppose G; C T*R2?\ 0 is closed s-conic for j = 1,2, suppose Gz C
T*R? \ 0 is closed s-conic, and suppose

Glﬂcgﬂp££4(G3U{0})\0:®.
Define I'j. =T, e fore >0 and j =1,2,3. Then for some € > 0 we have
IeNTocNpyly (D3 U{0})\0=0.

Proof. Note that p2_71_4 (G3 U {0})\0is closed s-conic in T*R2?\0, and pil_4 (T3 U{0})\O
is s-conic in T*R>2?\ 0 for any ¢ > 0.
Suppose that for each n € N we have

Xo = (@, Ys&ns ) € Ty 1 NTy 1 Np5ty (Ty 1 U{0}) V0.

Since Fj% for j = 1,2, as well as p;’£4 <F37% U {0}) \ 0, are s-conic in T*R2?\ 0, we
may assume that |X,| = 1 for all n € N. Passing to a subsequence (without change of
notation) we get X,, = X = (z,9,&,n) € $* 1 asn — +oc.

For each n € N and j = 1,2 there exists Y}, € G; N S%d—1 guch that | Xy —Yjn| < %
Thus | X —Yj,| < |X - X, |+|X, —Y)n| = 0asn — +oo. Since G is closed for j = 1,2,
it follows that X € G1 N Gs.

Suppose (y,n) = 0. Then X € p££4 (G3U{0}) \ 0 and thus

XGGlﬂGQQPQ_}_Zl(GgU{O})\O

which contradicts the assumption. Hence (y,7) # 0 must hold, and therefore (y,, —n,) €
['; 1 if n > N for N > 0 sufficiently large.

For each n > N there exists Y,, € G3 N S2¢~1 such that 1D1,s(Yns —1n) — Ya| < %
This gives [p1,s(y, —n) — Yol < [p1,s(y, —1) = P1sWn, =) | + |P1,5(Yn, =) — Ya| = 0
as n — +oo, taking into account the fact that p; , is continuous. Since G3 is closed
it follows that pis(y, —n) € Gs. This implies (y,—n) € G3 using the fact that Gg is
s-conic. We arrive at the conclusion X € py ', (G3U{0})\ 0 which again contradicts
the assumption.

We may conclude that for some n € N we must have

Ty Ty npgty (Tya U{0}) \0=0.

Finally we may state and prove our main result on propagation of singularities.

Theorem 5.5. Let t,s > 0 satisfy t +s > 1, and let & : 5(R?) — (X5) (RY) be
the continuous linear operator (5.5) defined by the Schwartz kernel K € (33) (R??),
and suppose that (5.1) holds. Then ¢ is continuous on ¥ (RY), extends uniquely to a
continuous operator on (X3) (RY), and for u € () (R?) we have

WEF S (#u) C WFS(K) o WE* (u).

Proof. By Proposition 5.2 % : ¥3(R%) — ¥3(RY) is continuous and extends uniquely
to a continuous linear operator .# : (Xf)" (RY) — (£5)' (R).
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Let ¢ € ¥¢(R?) satisfy |||,z = 1 and set ® = ¢ ® ¢ € ¥5(R2?). Proposition 5.2,
(5.7) and (5.8) give for u € (%7) (R?) and (z,¢) € T*R% and A > 0
(5.18)

|V¢(</4i/u)()\t:c, NE)| < /R4d VoK (y, z,n,—0)| |V<p<,0()\tac—y7 NE—n)| |[Vpu(z,0)| dy dz dn dé.

We may assume that WF"*(K) o WFH$(u) # T*R%\ 0 since the conclusion is trivial
otherwise. Suppose zg = (x0,&) € T*R?\ 0 and

(5.19) 20 ¢ WFH*(K)' o WF* (u).
To prove the theorem we show zg ¢ WF*(# ).

By Lemma 5.3 the set WF**(K)' o WF"*(u) is #-conic and closed. Thus we may

assume that zg € S2¢~1. Moreover, with fZO,gs ['s ., .2, there exists € > 0 such that

%7
a2 N (WES(K)Y o WES(w)) = 0.

Here FZO’QE denotes the closure of I',, . in T*R%\ 0. Using (5.16) we may write this as

Fap2e Mg (WFS(K) 0 p5 L WF (u)) = 0

or equivalently
PrATz02e VWEFSS(K) N pyt ,WF (u) = 0.

Due to assumption (5.1) we may strengthen this into
P15 (Cag.2e U{ON \ONWE(K) Npy Ly (WE () U{0}) \ 0 = 0.

Note that pl_zl,) (I:ZO,Q\E u{0})\ 0, WF*¥(K), and p5’£4 (WE$(u) U {0}) \ 0 are all closed
and £-conic subsets of T*R?®\ 0.

Now Lemma 5.4 gives the following conclusion. There exists open 3-conic subsets
'yt CT*R?\ 0 and I's € T*R?\ 0 such that

WE(K) C Ty, WF"(u) C Ty

and
(5.20) Pl NI NPyt Ty = 0.
By intersecting I'; with the set I'; defined in (5.2), we may by Lemma 5.1 assume that
(5.2) holds true.

Let r > 0. We will now start to estimate the integral (5.18) when (z,£) € (xo, &)+ Be
forsome0<€§%and)\>1.

We split the domain R*? of the integral (5.18) into three pieces. Set x = max(k(t~1), k(s™1))
and

5= inf x|t + €5 >0,
(3&,5)6(:60,50)+B5
A= sup 2|t + |€]+ < +oo.

(I,f)e (IO 7§O)+Bs
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First we integrate over R4\ I} where we may use (5.4). Combined with (2.7) and (2.8)
this gives if (z,€) € (x0,&) + Be for some r; > 0 and any 7o > 0
(5.21)

. VoK (y, 2,1, —0)| [Vop(Na — y, € — )| |Vipu(z, 0)| dy dz dn df
1

1 1 — 1 s 1 1 i
< / 6_7-2<‘(y7z)|t+‘(7779)|8> o0 1n<\>\t:c—y|t+\)\ 5—?7\5) erl(lz\f+|9|s> dydzdndé
RA4\[,

~

N

_ 1 1 1 1 _ 1 1 1 1
. 1A(|z|t+f|s)/ o2 (12T H@O )45~ s (lol T +nls ) 4ra (J217 +0l%) dy dz dn do
R4d\F’1

N

— 1 1
Y / oo ) (1wl T+ ) g g, 4 g
RA4d

< e—r)\

provided ro > r; + 76 k.
It remains to estimate the integral (5.18) over (y, z,n, —6) € I'1 where we may use
(5.2). By (5.20) we have

(5.22) 't CQUQ
where
Qo =1 \piéfzo,% Q=T \p571,4112-

First we estimate the integral over (y, 2,1, —0) € Q2. Then (2,0) € R?!\ I'y which
is a closed £-conic set. By WF"*(u) C Ty, the compactness of S**~1\ I'y and (4.7) we
obtain the estimates

1 1
V,u(z,0)] < () ) e RYA\ Ty, Wiy > 0.

Together with (5.2) and (2.7) this gives if (z,£) € (2o, &) + B: for some r; >0
(5.23)

[ VK (y, 2,0, =0 VoW =y, X6 = ) [Viu(z, 6)] dy dz d
2
5/ (1@ @O ) =8k (1N a—y| T +A6—n|*) Vau(z,0)| dy = dy 46
%
— 1 1 1 1 _ 1 1
<o 1A(|x|t+§|s)/ ¢ (N 4@ )rs = (Wit 41017) 2 931 dy dz diy 46
e
— z % % 1)K $ zl % % r 71& % %
ge—m/ ¢~ (@O ) (tran(lol4lelt+inl +1017 )4r6 =l E4017) 031 dy dz diy d6
2
— 1 1 1 1
< ) sup en((l+r1)(1+c)+r6 Le) (|z|t+|9\s) !V¢u(z,9)\ e*(\(y,Z)ltH(nﬂ)IS) dydzdndd
(2,0)€R29\TI'y RAd
5 G_T)\.
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_ Finally we need to estimate the integral over (y, z,7, —0) € Qo. Then (y,n) € R24\

I',, 2. Hence

20— (A ATn)| 225 VAS 0 Y(yg) € R\ oy

and we have for (z,&) € zo + B.

(@, &) — (A", A )| = VA>0 V(y,m) € R¥\ T, 0.

It follows that there exists o > 0 such that for A > 1, (z,£) € 20 + Be and (y,n) €
R\ T, 5. we have

t 1 s i —t 1 —s, %
Mo = glt + 3% =T = A (Jz = Xyl + e = A1) 2 e

Together with (5.2) and (2.7) this gives if (z,) € (z0,&0) + Be for some 71,72 > 0 and
any rs,r4 >0
(5.24)

/Q, VoK (y, 2,m, —0)| Voo (Na — y, A€ — )| [Vipu(2, 0)| dy dz dry 46
5 O/ o (|(y,z)|%+|(n,9)\%>+7"2(\Z|%+\9|%) e—(%—&-m/@)(\)\tr—y|%+|>\s§—77\%> dy dzdndé
< e_;/ e—(\(y,z)|%+\(n,9)|%>+(1+T1+T2)ﬁ(|y|%+|Z|%+‘77|‘%+‘9|%> e*f4“(|ktm*y|%+‘”5’”|%> dydzdndd
o
- 6_T3A+T4ZA(|Z|%+5|%) / (@m0 )+(ra+ro) (o) (jul 1) =ra (lulE+nl*) dy dzdn dd
o
< o~ Nrs—rand) / o ((y,zj|%+(n,e>|i)+(<1+r1+m><1+c>n—r4>(|y%+|n|i) dy = dn df

0
< 6—7’/\

if we first pick 74 > (1 4+ 71 +72)(1 + ¢)x and then r3 > r + r4xA.
Combining (5.21), (5.23) and (5.24) and taking into account (5.22), we have by (5.18)
shown

($7§)E($O7§O) ‘l‘Bs, A>0

which finally proves the claim zg ¢ WF>* (¢ ). O

6. THE t, $-GELFAND—SHILOV WAVE FRONT SET OF OSCILLATORY FUNCTIONS

An important reason for the introduction of the ¢, s-Gelfand—Shilov anisotropic wave
front set is that it describes accurately the phase space singularities of oscillatory func-
tions known generically as chirp signals.

Let ¢ : R? — R be a real polynomial of order m > 2

(6.1) o(x) = om(z) + p(z)
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where
(6.2) p(x) = Z car®, cq €R,
0<|al<m
and
(6.3) om(x) = Z car® ¢ €R, JaeN¢: |a|=m, ¢, € R\O,

laj=m

is the principal part.

In [21] we investigate the ¢, s-Gelfand—Shilov wave front set of chirp functions defined
on R. Here we generalize this into the domain R%. Thus we study chirp functions of
the form

(6.4) u(z) = %@ zeR

First we note that for any A > 0, any ¢t > 0 and any 1 < j < d we have
(6.5) AT™0; (o(A'y)) = Oeom(y) + N ™0p(Ay)
and if |y| < R and A > 1 then

(6.6) NEapAy) = Y ageay® N < Opat,

0<]a|<m—1

The following result generalizes [21, Theorem 4.2 (i)] and shows that only the principal
part @, (z) of ¢ is recorded in WEH* =1 (4), and the wave front set is contained in
the (m — 1)-conic set in phase space which is the graph of its gradient, that is 0 #
x = (z,Vm(x)). The gradient of the phase function is known as the instantaneous
frequency [2].

Theorem 6.1. If m > 2, ¢ is a real polynomial defined by (6.1), (6.2), (6.3), u is
defined by (6.4), and t > —= then

m—1
(6.7) WFHHm=D () C {(x, Vo (z)) € R* . 2 £ 0}.
If d =1 and ¢ is even or odd then
(6.8) WES D () = {(z, ¢, () € R*: @ # 0},

Proof. Set s = t(m — 1) > 1. This implies that there are compactly supported Gevrey
functions [19] of order s in the space ¥{(R?) which is a crucial ingredient in the proof.
Set

W = {(z,Vom(z)) e R*: z e R?\ 0} C T*R?\ 0.

Then W is an (m — 1)-conic subset in T*R%\ 0.

Suppose (zg,&) € R?*\ 0 and (zg,&) ¢ W. Then there exists 1 < j < d such that
o,j # 0jm (o). Thus there exist an open set U such that (z9,&) € U, and 0 < e < 1,
6 > 0, such that

@O U, le—yl<iV2 = |§-dpn@)|>2 [0(en(@) —on) < 5.



PROPAGATION OF ANISOTROPIC GELFAND-SHILOV WAVE FRONT SETS 25

By (6.6) we have
“m £
A 9;p(My)| < 5

if (z,6) €U, |z —y| <dv2and A > L where L > 1 is 5ufﬁcient1y large.
Using (6.5) we obtain if (z,&) € U, |z —y| < 5\f and \ >
(6.9)

& = A7, (9 (X)) | = 15— Byiom (@)] = (105 (Pm(y) = om (@)] + AT |9p(Ny)]) > 2

Let ¢ € ¥¢(R%) \ 0 have suppt C Bs. We denote by v/ € R%! the vector y € R
except coordinate j. The stationary phase theorem [9, Theorem 7.7.1] gives, for any
k€N, any h >0, and any A > L, if (z,&) € U, using (6.9) and (2.10),

[Vyu(Az, Xm=Dg))|

/ ez»((p(y)_)\t(mfl)(y,@),l/)()\t()\*ty — x)) dy‘
Rd

/ N O SN~ ) Ny — 7)) dy
|x y‘<6

d
2

— (2m)

= (27?)_g)\td

k
<”td/ LN (@ @ = )l - AT (o) [
' —y'|<

|zj—y;1<8
% )\tm(n—Qk) dy’

k
< O /| Y sup (@)X (y — )| dy/ ATl

¥~y <6 g lej—51<0

k
< Ch)\td€_2k>\_8k Z hnls
n=0

k
— ChAtdEka)\fskhk Z hf(kfn)n!s
n=0
L
< CpA\tde=2k \—skpkesh s Z(n'(kz —n)H?
n=0
< Cup N2k N5k 2p)k ks,
Since h > 0 is arbitrary we obtain
(6.10) AFER| Vyu( N, A2€)| < CRARRE . (2,€) € U,
for all h > 0, all A > L and all k£ € N. Appealing to [21, Lemma 4.1] we may conclude
that that (zo,&) ¢ WFH(™~Y(4) and the inclusion (6.7) follows.

Next let d = 1. If ¢ is even then u is even, and W = —W since m is even, so by (4.5)
we have either WF =1 (y) = () or WF“(m U(u) = W. The former is not true since
u ¢ ¥f(R?). Thus we have proved (6.8) when ¢ is even.

If ¢ is odd then m is odd and u(z) = u(z) = e @), Again WFHHm=D(y) = ¢
cannot hold since u ¢ %f(RY). If we assume that the inclusion (6.7) is strict we get a
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contradiction from (4.4) and (4.6). Indeed suppose e.g.
WEH =D () = {(z, ¢, (z)) e R*: = > 0}.
By (4.4) and (4.6) we then get the contradiction
WEH =D () = {(z, —¢! (z)) e R?: z <0}
= {(z,—¢,(x)) e R?: 2 >0} = WFH(m1(g),
This proves (6.8) when ¢ is odd. O

We would also like to determine WF»*(u) when s # t(m — 1). The following two
results treat this question.

Proposition 6.2. If m > 2, ¢ is a real polynomial defined by (6.1), (6.2), (6.3), u is
defined by (6.4), and s > t(m — 1) > 1 then

(6.11) WFH* (1) C (R4 0) x {0}.
If d =1 and ¢ is even or odd then
(6.12) WF"(u) = (R 0) x {0}.

Proof. Suppose (z9,&) € T*R® and & # 0, that is & ; # 0 for some 1 < j < d. From
(6.5) we obtain

A5 (') = NI (90 (y) + XM Dp(N) )

Thus from s > t(m — 1), using (6.6), it follows that there exist U C R2? such that
(x0,&) € U, and 0 < e < 1, L > 1 such that

& = A7"705 (e(N'y)) [ = &

when (2,€) €U, |[r —y| < v2and A > L.
Let 1 € %¢(R%) \ 0 be such that suppty) C By. The stationary phase theorem [9,
Theorem 7.7.1] yields, for any k € N, any h > 0, and any A > L, if (z,§) € U,

/ PN W)y (NE(A—ty — 1)) dy‘
Rd

Vu(\a, \€)| = (27)

d iztts()\—t—s t —
_ (21) Atd/ A O ) PN (= 2T d
(2m)~2 o Y(A(y — z)) dy
k
cond [ S sup (@) — )] - X0 (o) [
' —y'|<1 ., lzj—y;l<1
% )\(t+s)(n—2k) dy/
K
< Ch)\td{:‘_2k)\_5k Z hnn!sA(s—&—Qt)(n—k)
n=0

k
< Ch)\tdg_zk)\_Sk Z NN
n=0

< Cy A2k )\ =5k (op) s,
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Again using [21, Lemma 4.1] we may conclude that that (zq,&) ¢ WF"*(u) and the
inclusion (6.11) follows.

When d = 1 and ¢ is either even or odd then (6.12) follows as in the proof of Theorem
6.1. O

In our final result on the ¢, s-Gelfand—Shilov wave front set of a chirp function we
strengthen the assumption on the polynomial ¢,, to be elliptic.

Proposition 6.3. Let m > 2, let ¢ be a real polynomial defined by (6.1), (6.2), (6.3),
suppose om(z) # 0 for all z € R\ 0, and let u be defined by (6.4). Ift(m —1) > s> 1
then

(6.13) WESS(u) C {0} x (R%\ 0).
If d =1 and ¢ is even then
(6.14) WEF S (u) = {0} x (R\ 0).

Proof. Suppose (z0,&) € T*R?% and xg # 0. The assumption ¢,,(z) # 0 for all 2 €
R?\ 0 and Euler’s homogeneous function theorem imply that V,,(zo) # 0, that is
0jom(x0) # 0 for some 1 < j < d. From (6.5) and (6.6) and ¢(m — 1) > s > 1 it follows
that there exist U C R2? such that (z9,&) € U, 1< j<dand 0 <e<1, L >1such
that

’)\tJrsftmgj o /\ftmaj (cp(Aty)) | 2 €

when (z,€) € U, v —y| <ev2and A > L.

Let ¥ € ¥$(R%) \ 0 be such that suppyy C B.. Again by the stationary phase
theorem [9, Theorem 7.7.1] we obtain, for any k¥ € N, any h > 0, and any A > L, if
(,8) €U,

Vpu(\a, A€)| = (2m)2

/ ez‘(cp(y)—ks<y1£>)¢()\t()ﬁty —x)) dy‘
Rd

_ (27T)7%>\td / 61'/\“”(A—tmso(/\ty)fAt“‘m)*S(y,£>)1/)()\t(y —2)) dy‘
Rd
k
<ont [ S s (@) - )
lz'—y'|<e ,,—0 lzj—yjl<e

« |>\t(1fm)+s€j _ )\ftmaj (SO()\ty)) ’ank:)\tm(ank:) dy/

k
< Ch)\tdE—Qk)\—sk; Z hnn!S)\sk-i-t(n—mk)

n=0

k
g ChAtd572kAfsk Z hnn!SAt((mfl)k+n7mk)

n=0

< Oy pA\de™2k N5k (op)PEls,

As before this shows that (zg, &) ¢ WF"*(u) and (6.11) follows.
When d =1 and ¢ is even then (6.14) follows as in the proof of Theorem 6.1. O
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7. PROPAGATION OF THE t, s-GELFAND—-SHILOV WAVE FRONT SET FOR A
PARTICULAR EVOLUTION EQUATION

In [21, Remark 4.7] we discuss the initial value Cauchy problem for the evolution
equation in dimension d =1
owu(t,z) +iDu(t,z) =0, meN\0, ze€R, teR,
u(0,-) = up.
It is a generalization of the Schrodinger equation for the free particle where m = 2.

Here we generalize this equation into

{ ou(t, ) +ip(Dy)u(t,z) =0, ze€R?I teR,

(7.1) 0

where p : R? = R is a polynomial with real coefficients of order m > 2, that is
(7.2) p&) =D cl” ca€R.
|a|l<m
The principal part is
(7.3) pm(§) = Z ca”
|a|=m

and there exists o € N? such that || = m and ¢, # 0.
The Hamiltonian is p(§), and the Hamiltonian flow of the principal part p,,(§) is given

by
(7.4)  (2(t),£(1) = xt(w0, &) = (w0 + VP (&0), &), tER, (20,&) € T*RE\ 0.
The explicit solution to (7.1) is
u(t,) = e Py = (2) [ 0907 (¢)ag
R

for ug € .7 (R%). Thus u(t,z) = Hjuo(x) where %#; is the operator with Schwartz kernel

Ki(z,y) = (zﬂ)d/ ! —vE)—itp(€) g ¢
) Rd
= m) 2 e ) (@ —y)
which may be considered an element in .#’/(R?¢). Thus .#; is a convolution operator
with convolution kernel

(7.5) ke = (2m)"2.F L (") € 7 (RY)
and we may write
(76) Kt(xa y) = (1 X kt) o Hﬁl(l‘) y)

where x € R*? is the matrix defined by x(z,y) = (x+ 4,2 — 4) for z,y € R%

Since K; € .7/(R?d) C (22)(R??) if r + s > 1, the operator % : ¥3(R%) — (28)(R%)
is continuous for all ¢ € R.

The next result shows that .#; acts continuously on ¥3(R%) if r > s(m — 1) > 1,
and the (s(m — 1), s)-Gelfand—Shilov wave front set of the solution propagates along the
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Hamiltonian flow of p,,, whereas the (7, s)-Gelfand—Shilov wave front set is invariant
when r > s(m — 1).

Theorem 7.1. Suppose m > 2 and let p be defined by (7.2), (7.3), and denote by (7.4)
the Hamiltonian flow of the principal part py,. Let r,s > 0 satisfy r = s(m — 1) > 1,
suppose #; : (R — ' (RY) is the continuous linear operator with Schwartz kernel
(7.6) where ky is defined by (7.5). Then ;i : £3(R?) — L3(RY) is continuous, extends
uniquely to a continuous operator J#; : (X5)(RY) — (X8)(RY), and is invertible with
inverse ;' = H ;. Fort € R we have

(7.7) WE D () =y (WE D)), e (35,,,)) (RY),
(7.8) WE™ (Hu) = WE™ (1), ue (25 (RY), r>s(m-—1).
Proof. First we let r = s(m — 1) > 1. By Theorem 6.1 we have
WES" (7Y C {(z, —tVpm(z)) € T*R?: = # 0}
and from (4.4) and [21, Proposition 3.6 (i)] we obtain
WE™ (k) = WE™(F ™) = _WEF"S(Feith)
— _JWEST (71t
C{(tVpm(x),z) € T*RY: = # 0}.

Now (7.6), [21, Proposition 3.6 (ii)], Proposition 4.5 and [21, Proposition 7.1 (iii)]
yield

WEF™*(K;) = WE™S((1 @ k¢) o k1)
k 0 s
= ( 0 o T )WF7 (1® k)

C {(k(z1,22), 57T (&1,82)) € TR :
(z1,&1) € WE™* (1) U {0}, (w2,&2) € WE™*(k;) U{0}}\ 0
k(x1, thm(:zg)) T(O, x9) € T*R*: zq,29 € Rd} \O

N

{(x
1
{(ml +t= me(arg) T — thpm(a:g),a:z, —:@) c T*R?*? . T1,T9 € Rd} \O

(1 + tVpm(x2), 21, 22, —T2) € T*R?*: zq,29 € Rd} \ 0.

Since m > 2 we have Vp,,(0) = 0 and WF*(K;) = WFy*(K;) = 0 follows. Thus
we may apply Theorem 5.5. This gives the continuity statements on ¥¢(R?) and on
(25)(R%). Tt also follows that % is invertible with inverse . ' = % ; on ¥3(R%) as
well as on (22)'(R%). Moreover Theorem 5.5 gives for u € (32) (R%)

WE™ (1) € WE™(K;) o WE™ (u)
={(z,§) e T"R*: I(y,n) € WF"*(u), (z,y,& —n) € WF"*(K;)}
C {(x1 +tVppm(x2),22) : (21,22) € WE"*(u)}
= xt (WF"*(u)).
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The opposite inclusion follows from Jift_l = X4,
WE"%(u) = WE™*(F_ Hu) C x—e (WE™*(Hu))

and y_; = x; *. We have proved the result when r = s(m — 1) and (7.7).
It remains to consider the case r > s(m — 1) > 1. By Proposition 6.2 we have

WEF"(e7") C (R%\ 0) x {0}
and from (4.4) and [21, Proposition 3.6 (i)] we obtain
WE™*(ky) = —JWF*"(e7) C {0} x (R?\ 0).

Again (7.6), [21, Proposition 3.6 (ii)], Proposition 4.5 and [21, Proposition 7.1 (iii)]
yield

WE™$(K;) C {(k(z1,22), k"L (&1,&)) € T*R* .
(1,&) € WE™(1) U {0}, (x2,&) € WEF™®(k) U{0}}\ 0
C {(k(x1,0), s T(0,29) € T*R*?: z1, 25 € R¥}\ 0
= {(:cl,xl,a:Q, —x3) € T*R?*: 21,29 € Rd} \ 0.
Again we have WF*(K;) = WFy*(K;) = 0, and Theorem 5.5 gives the continuity

statements on ¥¥(R%) and on (X2)'(R%). Again .%#; is invertible with inverse %, ' = #_
on ¥3(R?) as well as on (X%) (RY). Now Theorem 5.5 gives u € (£3)" (RY)

WE™ (u) C WE™(K,) o WE”* (1) C WE™(u).

The opposite inclusion again follows from Jift*l = and x—t = x; 1 We have
proved the result when r > s(m — 1) > 1 and (7.8). O

Remark 7.2. In the proof of Theorem 7.1 the continuity of .%#; : £5(R%) — £5(R%) when
r > s(m—1) > 1 is proved by means of the observation WF;*(K;) = WFy*(K;) = () and
Proposition 5.2. It seems much more complicated to try to show this using seminorms
on Ju for u € L5(RY).

Remark 7.3. If s(m — 1) > r > 1 and p,,(z) # 0 for all z € R%\ 0 then Proposition 6.3
gives A
WE*" (=) C {0} x (R?\ 0)
so (4.4) and [21, Proposition 3.6 (i)] give
WE™(ky) = —JWF*"(e~%) C (R?\ 0) x {0}.

Again (7.6), [21, Proposition 3.6 (ii)], Proposition 4.5 and [21, Proposition 7.1 (iii)]
yield

WE™*(K;) C {(k(x1,220),x L (&1,6)) € T*R*
(z1,61) € WE™*(1) U{0}, (22,&) € WE™ (k) U{0}}\ 0
C {(k(z1,22),k 1(0,0) € T*R**: z1, 25 € R¥}\ 0
= (R 0) x {0}.
In this case we cannot conclude that WF*(K;) and WFy*(K;) are empty.
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Thus we cannot conclude any continuity statement from Theorem 5.5. It is an open
problem to prove or disprove continuity of % on X3(R?) when s(m — 1) > r > 1.
Likewise continuity on X%(R%) is not known when r + s > 1 and r < 1, nor when
r+s>1ands(m—1)<1.
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