Despite major environmental and genetic differences, microbial metabolic networks are known to generate consistent physiological outcomes across vastly different organisms. This remarkable robustness suggests that, at least in bacteria, metabolic activity may be guided by universal principles. The constrained optimization of evolutionarily motivated objective functions, such as the growth rate, has emerged as the key theoretical assumption for the study of bacterial metabolism. While conceptually and practically useful in many situations, the idea that certain functions are optimized is hard to validate in data. Moreover, it is not always clear how optimality can be reconciled with the high degree of single-cell variability observed in experiments within microbial populations. To shed light on these issues, we develop an inverse modeling framework that connects the fitness of a population of cells (represented by the mean single-cell growth rate) to the underlying metabolic variability through the maximum entropy inference of the distribution of metabolic phenotypes from data. While no clear objective function emerges, we find that, as the medium gets richer, the fitness and inferred variability for Escherichia coli populations follow and slowly approach the theoretically optimal bound defined by minimal reduction of variability at given fitness. These results suggest that bacterial metabolism may be crucially shaped by a population-level trade-off between growth and heterogeneity.
Relationship between fitness and heterogeneity in exponentially growing microbial populations / Muntoni, Anna Paola; Braunstein, Alfredo; Pagnani, Andrea; De Martino, Daniele; De Martino, Andrea. - In: BIOPHYSICAL JOURNAL. - ISSN 0006-3495. - ELETTRONICO. - 121:10(2022), pp. 1919-1930. [10.1016/j.bpj.2022.04.012]
Relationship between fitness and heterogeneity in exponentially growing microbial populations
Muntoni, Anna Paola;Braunstein, Alfredo;Pagnani, Andrea;De Martino, Andrea
2022
Abstract
Despite major environmental and genetic differences, microbial metabolic networks are known to generate consistent physiological outcomes across vastly different organisms. This remarkable robustness suggests that, at least in bacteria, metabolic activity may be guided by universal principles. The constrained optimization of evolutionarily motivated objective functions, such as the growth rate, has emerged as the key theoretical assumption for the study of bacterial metabolism. While conceptually and practically useful in many situations, the idea that certain functions are optimized is hard to validate in data. Moreover, it is not always clear how optimality can be reconciled with the high degree of single-cell variability observed in experiments within microbial populations. To shed light on these issues, we develop an inverse modeling framework that connects the fitness of a population of cells (represented by the mean single-cell growth rate) to the underlying metabolic variability through the maximum entropy inference of the distribution of metabolic phenotypes from data. While no clear objective function emerges, we find that, as the medium gets richer, the fitness and inferred variability for Escherichia coli populations follow and slowly approach the theoretically optimal bound defined by minimal reduction of variability at given fitness. These results suggest that bacterial metabolism may be crucially shaped by a population-level trade-off between growth and heterogeneity.File | Dimensione | Formato | |
---|---|---|---|
mmc2.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
9.12 MB
Formato
Adobe PDF
|
9.12 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2974099