In mechatronic applications such as electro-hydrostatic actuators, gerotor machines are often preferred over other technologies due to their high efficiency, low wear, low noise, and compactness. The design approach for hydraulic machines, either for motoring or pumping applications, involves the definition of different geometrical parameters, which affect their performance. Thus, the designer is often left without a clear design method to adopt. In this perspective, the presented research aims at providing a general design methodology of gerotor machines for their integration into high-efficiency mechatronic devices. In particular, the study focuses on the analytical and numerical characterization of the optimal tooth aspect ratio and maximum eccentricity between gears. Indeed, these two features are often left to the experience of the designer or are selected with empirical formulations. Our method is validated by means of numerical data from computational fluid-dynamic models to assess the performance of the hydraulic units.

Design Methodology of Gerotor Hydraulic Machines for Mechatronic Applications / Puliti, Marco; Tessari, Federico; Galluzzi, Renato; Tonoli, Andrea; Amati, Nicola. - ELETTRONICO. - 6:(2021). (Intervento presentato al convegno International Mechanical Engineering Congress and Exposition (IMECE) 2021) [10.1115/imece2021-73205].

Design Methodology of Gerotor Hydraulic Machines for Mechatronic Applications

Marco Puliti;Federico Tessari;Renato Galluzzi;Andrea Tonoli;Nicola Amati
2021

Abstract

In mechatronic applications such as electro-hydrostatic actuators, gerotor machines are often preferred over other technologies due to their high efficiency, low wear, low noise, and compactness. The design approach for hydraulic machines, either for motoring or pumping applications, involves the definition of different geometrical parameters, which affect their performance. Thus, the designer is often left without a clear design method to adopt. In this perspective, the presented research aims at providing a general design methodology of gerotor machines for their integration into high-efficiency mechatronic devices. In particular, the study focuses on the analytical and numerical characterization of the optimal tooth aspect ratio and maximum eccentricity between gears. Indeed, these two features are often left to the experience of the designer or are selected with empirical formulations. Our method is validated by means of numerical data from computational fluid-dynamic models to assess the performance of the hydraulic units.
2021
978-0-7918-8560-4
File in questo prodotto:
File Dimensione Formato  
IMECE2021-73205.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2973570