We present an overview of the application of machine learning for traffic engineering and network optimization in optical data center networks. In particular, we discuss the application of supervised and unsupervised learning for bandwidth and topology reconfiguration.
Machine-Learning-Aided Bandwidth and Topology Reconfiguration for Optical Data Center Networks / Proietti, R.; Liu, C. -Y.; Chen, X.; Ben Yoo, S. J.. - ELETTRONICO. - (2021). (Intervento presentato al convegno 2021 Optical Fiber Communications Conference and Exhibition, OFC 2021 tenutosi a Washington, DC United States nel 6–11 June 2021) [10.1364/OFC.2021.W4A.4].
Machine-Learning-Aided Bandwidth and Topology Reconfiguration for Optical Data Center Networks
Proietti R.;
2021
Abstract
We present an overview of the application of machine learning for traffic engineering and network optimization in optical data center networks. In particular, we discuss the application of supervised and unsupervised learning for bandwidth and topology reconfiguration.File | Dimensione | Formato | |
---|---|---|---|
Machine-Learning-Aided_Bandwidth_and_Topology_Reconfiguration_for_Optical_Data_Center_Networks.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
343.53 kB
Formato
Adobe PDF
|
343.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
OFC21_Invited_SiPh_Flexible_Data_Centers.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2973501