We present an overview of the application of machine learning for traffic engineering and network optimization in optical data center networks. In particular, we discuss the application of supervised and unsupervised learning for bandwidth and topology reconfiguration.

Machine-Learning-Aided Bandwidth and Topology Reconfiguration for Optical Data Center Networks / Proietti, R.; Liu, C. -Y.; Chen, X.; Ben Yoo, S. J.. - ELETTRONICO. - (2021). (Intervento presentato al convegno 2021 Optical Fiber Communications Conference and Exhibition, OFC 2021 tenutosi a Washington, DC United States nel 6–11 June 2021) [10.1364/OFC.2021.W4A.4].

Machine-Learning-Aided Bandwidth and Topology Reconfiguration for Optical Data Center Networks

Proietti R.;
2021

Abstract

We present an overview of the application of machine learning for traffic engineering and network optimization in optical data center networks. In particular, we discuss the application of supervised and unsupervised learning for bandwidth and topology reconfiguration.
File in questo prodotto:
File Dimensione Formato  
Machine-Learning-Aided_Bandwidth_and_Topology_Reconfiguration_for_Optical_Data_Center_Networks.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 343.53 kB
Formato Adobe PDF
343.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
OFC21_Invited_SiPh_Flexible_Data_Centers.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2973501