Tight integration of low-cost Ultra-Wide Band (UWB) ranging sensors with mass-market Global Navigation Satellite System (GNSS) receivers is gaining attention as a high-accuracy positioning strategy for consumer applications dealing with challenging environments. However, due to independent clocks embedded in Commercial-Off-The-Shelf (COTS) chipsets, the time scales associated with sensor measurements are misaligned, leading to inconsistent data fusion. Centralized, recursive filtering architectures can compensate for this offset and achieve accurate state estimation. In line with this, a GNSS/UWB tight integration scheme based on an Extended Kalman Filter (EKF) is developed that performs online time calibration of the sensors' measurements by recursively modeling the GNSS/UWB time-offset as an additional unknown in the system state-space model. Furthermore, a double-update filtering model is proposed that embeds optimizations for the adaptive weighting of UWB measurements. Simulation results show that the double-update EKF algorithm can achieve a horizontal positioning accuracy gain of 41.60% over a plain EKF integration with uncalibrated time-offset and of 15.43% over the EKF with naive time-offset calibration. Moreover, a real-world experimental assessment demonstrates improved Root-Mean-Square Error (RMSE) performance of 57.58% and 31.03%, respectively.
Enhanced EKF-based Time Calibration for GNSS/UWB Tight Integration / Guo, Yihan; Vouch, Oliviero; Zocca, Simone; Minetto, Alex; Dovis, Fabio. - In: IEEE SENSORS JOURNAL. - ISSN 1530-437X. - ELETTRONICO. - 23:1(2023), pp. 552-566. [10.1109/JSEN.2022.3223974]
Enhanced EKF-based Time Calibration for GNSS/UWB Tight Integration
Yihan Guo;Oliviero Vouch;Simone Zocca;Alex Minetto;Fabio Dovis
2023
Abstract
Tight integration of low-cost Ultra-Wide Band (UWB) ranging sensors with mass-market Global Navigation Satellite System (GNSS) receivers is gaining attention as a high-accuracy positioning strategy for consumer applications dealing with challenging environments. However, due to independent clocks embedded in Commercial-Off-The-Shelf (COTS) chipsets, the time scales associated with sensor measurements are misaligned, leading to inconsistent data fusion. Centralized, recursive filtering architectures can compensate for this offset and achieve accurate state estimation. In line with this, a GNSS/UWB tight integration scheme based on an Extended Kalman Filter (EKF) is developed that performs online time calibration of the sensors' measurements by recursively modeling the GNSS/UWB time-offset as an additional unknown in the system state-space model. Furthermore, a double-update filtering model is proposed that embeds optimizations for the adaptive weighting of UWB measurements. Simulation results show that the double-update EKF algorithm can achieve a horizontal positioning accuracy gain of 41.60% over a plain EKF integration with uncalibrated time-offset and of 15.43% over the EKF with naive time-offset calibration. Moreover, a real-world experimental assessment demonstrates improved Root-Mean-Square Error (RMSE) performance of 57.58% and 31.03%, respectively.| File | Dimensione | Formato | |
|---|---|---|---|
| Enhanced_EKF-based_Time_Calibration_for_GNSS_UWB_Tight_Integration_Author_PostPrint.pdf accesso aperto 
											Descrizione: Articolo principale
										 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										6.35 MB
									 
										Formato
										Adobe PDF
									 | 6.35 MB | Adobe PDF | Visualizza/Apri | 
| Enhanced_EKF-Based_Time_Calibration_for_GNSS_UWB_Tight_Integration.pdf accesso aperto 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										4.49 MB
									 
										Formato
										Adobe PDF
									 | 4.49 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2973490
			
		
	
	
	
			      	