It has been recently demonstrated that neural networks can learn the complex pump–signal relations in Raman amplifiers. Here we experimentally show how these neural network models are applied to provide highly–accurate Raman amplifier designs and flexible configuration for ultra–wideband optical communication systems.

Optimization of Raman amplifiers using machine learning / De Moura, U. C.; Da Ros, F.; Zibar, D.; Rosa Brusin, A. M.; Carena, A.. - ELETTRONICO. - (2021), pp. 1-2. (Intervento presentato al convegno 2021 IEEE Photonics Society Summer Topicals Meeting Series (SUM) tenutosi a Cabo San Lucas (Mexico) nel 19-21 July 2021) [10.1109/SUM48717.2021.9505708].

Optimization of Raman amplifiers using machine learning

Rosa Brusin A. M.;Carena A.
2021

Abstract

It has been recently demonstrated that neural networks can learn the complex pump–signal relations in Raman amplifiers. Here we experimentally show how these neural network models are applied to provide highly–accurate Raman amplifier designs and flexible configuration for ultra–wideband optical communication systems.
2021
978-1-6654-1600-9
File in questo prodotto:
File Dimensione Formato  
Optimization_of_Raman_amplifiers_using_machine_learning.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 649.77 kB
Formato Adobe PDF
649.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
SummTop2021_invited_Uiara_submitted.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 295.55 kB
Formato Adobe PDF
295.55 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2973378