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Abstract—It has been recently demonstrated that neural net-
works can learn the complex pump–signal relations in Raman
amplifiers. Here we experimentally show how these neural
network models are applied to provide highly–accurate Raman
amplifier designs and flexible configuration for ultra–wideband
optical communication systems.

Index Terms—optical communications, machine learning, in-
verse system design, optimization

I. INTRODUCTION

The research in optical amplifiers is currently facing two
major challenges: data–rate increase and dynamic operation
in optical communication systems [1]. Erbium-doped fiber
amplifiers (EDFAs), the most mature and widely commercially
deployed amplification technology, have enabled bit rates
approaching 1 Tb/s per fiber in the 90s by exploiting the
wavelength division multiplexing (WDM) transmission [2].
However, EDFAs have a limited operating bandwidth, covering
the C–band and part of the L–band (ITU-T grid). Therefore,
to explore the full 53 THz low loss spectra of the optical
fibers, other technologies have been investigated and experi-
mentally validated. Among the candidates, Raman amplifiers
(RAs) have recently gained renewed interest due to their
broadband amplification when operating in a multiple pump
lasers scheme [3]. They also present a low noise figure when
providing distributed amplification. Another interesting feature
that is exclusive to RAs is the possibility to arbitrarily shape
their gain profile by properly adjusting the pump powers and
wavelengths [4]. This adds a new level of flexibility and
dynamic adaptability to the optical amplifier, and thus to
optical communication systems.

The RA design consists of properly selecting the pump
configuration, i.e. the number of pumps, their wavelengths,
and power distribution, to provide the desired gain profile.
Due to the complex interactions between pumps and signals,
the RA design is not a trivial task. Recently, machine learning
(ML) tools have been proposed to address this problem [4]–
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[8]. These works exploit the neural networks (NN) capa-
bilities of universal function approximators to learn, from a
given data set, the underlying mapping from gain profiles to
pump powers/wavelengths, i.e. the RA inverse mapping. After
trained, the NN inverse model can instantaneously deliver the
corresponding pump configuration for any desired gain profile,
providing a fast programmable gain profile tool simply relying
on matrix multiplications.

Here, we will provide an overview of our recent works
on ML-based RA inverse design and optimization [4]–[6]. In
these works, artificial NNs were employed to design RAs in
different scenarios, with bandwidths ranging from 4 THz (C–
band) to 17.6 THz (S+C+L–band). Highly accurate designs
were obtained, showing that ML-enabled RA can potentially
unlock the high capacity of the already deployed optical fibers
by providing both ultra–wideband transmission and flexible
gain profile operation.

II. ML-ENABLED RAMAN AMPLIFIER DESIGN

Fig. 1 summarizes our recently proposed ML framework
for the RA inverse design [4]. The process to develop, apply
and validate such an ML framework has four steps. (1) Ex-
perimental data acquisition: different pump configurations are
applied to an experimental RA setup and the corresponding
Raman gains are measured. This step is not illustrated in
Fig. 1. (2) Model training: the ML framework is based on two
NN models: NNfwd (Fig. 1(a)) and NNinv (Fig. 1(b)). They
use the experimental data–set generated in step 1 to learn the
inverse (G 7→ P) and forward (P 7→ G) mappings for the RA
system. P is the pump configuration vector and can contain
information about the pump powers, wavelengths, currents,
etc. In Fig. 1(a-b), to exemplify, we consider the pump power:
P = [P1, P2, ..., Pn]

T for n pumps. G = [G1, G2, ..., GN ]T is
the gain vector describing the gain profile over N frequency
channels. (3) Gain design: after training, NNinv receives a
target gain profile GTARG and returns the pump configuration
PDESIGN needed to achieve the corresponding GTARG, as
shown in Fig. 1(c). If PDESIGN is not sufficiently accurate,
it can be finely optimized. This optional fine design procedure
is depicted in Fig. 1(d) and consists of using NNfwd in a
gradient descent (GD) loop that minimizes the mean squared
error (MSE) between GPRED and GTARG. During the fine
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Fig. 1. Neural network models for the (a) forward (NNfwd) and (b) inverse (NNinv) Raman amplifier mappings; full machine learning framework composed
of the (c) design and (d) gradient descent-based fine design to finely optimize NNinv predictions; and (e) experimental design validation procedure applying
the pump configurations from design and fine design to the Raman amplifier.

design, NNfwd is used for fast gain predictions and gradient
computations. The optimized pump POPT is obtained after
a few iterations since the process started from an already
optimized solution provided by PDESIGN. (4) Experimental
validation: PDESIGN and POPT are applied to the experi-
mental RA and the measured gain profile GMEAS is compared
to GTARG in terms of maximum absolute error along the
frequency channels EMAX = max(|GMEAS −GTARG|).

In Fig. 2, we show the experimental results for: C–band
distributed RA (4 THz, n=4, N=40) [5], C+L–band discrete
RA (9.4 THz, n=5, N=90) [6], and S+C+L–band discrete
RA (17.6 THz, n=8, N=148) [6] in terms of probability
density functions (PDF) and the cumulative distribution func-
tions (CDF) for EMAX (with mean and standard deviation
in the legend). Details about the experimental setups and
NNfwd/NNinv model selection and training can be found
in [5], [6].

These results show highly–accurate pump prediction for
NNinv (Fig. 2(a)). In fact, mean EMAX slightly degrades
when applying the fine design as seen in Fig. 2(b). This occurs
for the widest bandwidths (mainly S+C+L–band) and it is
because the fine design relies on the NNfwd model that has
a certain prediction error. Since NNinv has already found
the pump configuration that minimizes the MSE, the fine
design ends up worsening the performance by adding some
random deviations around the minimum [6]. However, for high
EMAX (>1 dB) cases, the fine design considerably improves
the performance, as observed by the significantly maximum
EMAX values reduction from Fig. 2(a) to Fig. 2(b). For most
cases the pump configuration for arbitrary gain profiles can be
performed in a low–complex way as applying NNinv requires
only matrix multiplications. Therefore, the NN–based RA
provides fast gain profile reconfigurability, which is essential
to support the dynamic operation in future ultra–wideband
systems.

III. SUMMARY

Machine learning has proved to be a powerful tool for
Raman amplifier design and optimization. By learning the
complex signal–pump mapping from experimental data, it
can provide ultra–fast, low–complexity, and high–accuracy
pump configuration for an arbitrary gain profile. The ability
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Fig. 2. Machine learning framework experimental validation for the three
investigated Raman amplifiers showing the probability density functions
(PDF) and cumulative distribution functions (CDF) of the maximum absolute
error EMAX over the frequency channels for the (a) design and (b) fine
design. Mean and standard deviation values are shown in the legends.

to finely tune the amplifier gain profiles over such an ultra–
wideband is a remarkable achievement that will enable the use
of the unexplored optical fiber broadband in an intelligent and
flexible way.
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