The need for users' safety and technology accept-ability has incredibly increased with the deployment of co-bots physically interacting with humans in industrial settings, and for people assistance. A well-studied approach to meet these requirements is to ensure human-like robot motions. Classic solutions for anthropomorphic movement generation usually rely on optimization procedures, which build upon hypotheses devised from neuroscientific literature, or capitalize on learning methods. However, these approaches come with limitations, e.g. limited motion variability or the need for high dimensional datasets. In this work, we present a technique to directly embed human upper limb principal motion modes computed through functional analysis in the robot trajectory optimization. We report on the implementation with manipulators with redundant anthropomorphic kinematic architectures - although dissimilar with respect to the human model used for functional mode extraction - via Cartesian impedance control. In our experiments, we show how human trajectories mapped onto a robotic manipulator still exhibit the main characteristics of human-likeness, e.g. low jerk values. We discuss the results with respect to the state of the art, and their implications for advanced human-robot interaction in industrial co-botics and for human assistance.

A technical framework for human-like motion generation with autonomous anthropomorphic redundant manipulators / Averta, G.; Caporale, D.; Della Santina, C.; Bicchi, A.; Bianchi, M.. - (2020), pp. 3853-3859. (Intervento presentato al convegno 2020 IEEE International Conference on Robotics and Automation, ICRA 2020 tenutosi a Paris (FRA) nel 2020) [10.1109/ICRA40945.2020.9196937].

A technical framework for human-like motion generation with autonomous anthropomorphic redundant manipulators

Averta G.;
2020

Abstract

The need for users' safety and technology accept-ability has incredibly increased with the deployment of co-bots physically interacting with humans in industrial settings, and for people assistance. A well-studied approach to meet these requirements is to ensure human-like robot motions. Classic solutions for anthropomorphic movement generation usually rely on optimization procedures, which build upon hypotheses devised from neuroscientific literature, or capitalize on learning methods. However, these approaches come with limitations, e.g. limited motion variability or the need for high dimensional datasets. In this work, we present a technique to directly embed human upper limb principal motion modes computed through functional analysis in the robot trajectory optimization. We report on the implementation with manipulators with redundant anthropomorphic kinematic architectures - although dissimilar with respect to the human model used for functional mode extraction - via Cartesian impedance control. In our experiments, we show how human trajectories mapped onto a robotic manipulator still exhibit the main characteristics of human-likeness, e.g. low jerk values. We discuss the results with respect to the state of the art, and their implications for advanced human-robot interaction in industrial co-botics and for human assistance.
2020
978-1-7281-7395-5
File in questo prodotto:
File Dimensione Formato  
A_technical_framework_for_human-like_motion_generation_with_autonomous_anthropomorphic_redundant_manipulators.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.9 MB
Formato Adobe PDF
3.9 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
paper_planning_HL_robots_IC_ICRA20201_1.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 4.99 MB
Formato Adobe PDF
4.99 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2970287