This paper deals with the development of a surrogate model for the uncertainty quantification and the stochastic analysis of passive intermodulation (PIM) in an Aluminum-Aluminum contact based on the least-squares support vector machine (LS-SVM) regression. Starting from a small set of training pairs collecting the configuration of the un-certain parameters and the corresponding PIM level, the LS-SVM allows to build a closed-form approximation of such non-linear relationship. Such model, can be suitably used within a Monte Carlo (MC) scenario in order to accelerate the simulation process and provide all the statistical quantities of interest. The results show a considerable speed-up on the computational time compared to a plain MC simulation, while achieving an accurate approximation of the PIM probability density function.
Machine Learning-Based Uncertainty Quantification of Passive Intermodulation in Aluminum Contact / Treviso, Felipe; Trinchero, Riccardo; Canavero, Flavio G.. - ELETTRONICO. - (2022), pp. 1-4. (Intervento presentato al convegno 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC) tenutosi a Gran Canaria, Spain nel 30 May 2022 - 04 June 2022) [10.23919/AT-AP-RASC54737.2022.9814426].
Machine Learning-Based Uncertainty Quantification of Passive Intermodulation in Aluminum Contact
Treviso, Felipe;Trinchero, Riccardo;Canavero, Flavio G.
2022
Abstract
This paper deals with the development of a surrogate model for the uncertainty quantification and the stochastic analysis of passive intermodulation (PIM) in an Aluminum-Aluminum contact based on the least-squares support vector machine (LS-SVM) regression. Starting from a small set of training pairs collecting the configuration of the un-certain parameters and the corresponding PIM level, the LS-SVM allows to build a closed-form approximation of such non-linear relationship. Such model, can be suitably used within a Monte Carlo (MC) scenario in order to accelerate the simulation process and provide all the statistical quantities of interest. The results show a considerable speed-up on the computational time compared to a plain MC simulation, while achieving an accurate approximation of the PIM probability density function.File | Dimensione | Formato | |
---|---|---|---|
YSASummaryTrevisoFelipe.pdf
accesso aperto
Descrizione: Accepted manuscript
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
772.4 kB
Formato
Adobe PDF
|
772.4 kB | Adobe PDF | Visualizza/Apri |
Treviso-MachineLearning.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
761.57 kB
Formato
Adobe PDF
|
761.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2969970