The spread of the Internet of Things (IoT) and the use of smart control systems in many mission-critical or safety-critical applications domains, like automotive or aeronautical, make devices attractive targets for attackers. Nowadays, several of these are mixed-criticality systems, i.e., they run both high-criticality tasks (e.g., a car control system) and low-criticality ones (e.g., infotainment). High-criticality routines often employ Real-Time Operating Systems (RTOS) to enforce hard real-time requirements, while the tasks with lower constraints can be delegated to more generic-purpose operating systems (GPOS). Much of the control code for these devices is written in memory-unsafe languages such as C and C++. This makes them susceptible to powerful binary attacks, such as the famous Return-Oriented Programming (ROP). Control-Flow Integrity (CFI) is the most investigated security technique to protect against such threats. At now, CFI solutions for real-time embedded systems are not as mature as the ones for general-purpose systems, and even more, there is a lack of in-depth studies on how different operating systems with different security requirements and timing constraints can coexist on a single multicore platform. This paper aims at drawing attention to the subject, discussing the current scientific proposal, and in turn proposing a solution for an optimized asymmetric verification system for execution integrity. By using an embedded hypervisor, predefined cores could be dedicated to only high or low-criticality tasks, with the high-priority core being monitored by the lower-criticality core, relying on offline binary instrumentation and a light exchange of information and signals at runtime. The work also presents preliminary results about a possible implementation for multicore ARM platforms, running both RTOS and GPOS, both in terms of security and performance penalties.
Real-Time Control-Flow Integrity for Multicore Mixed-Criticality IoT Systems / Eftekhari Moghadam, Vahid; Prinetto, Paolo; Roascio, Gianluca. - ELETTRONICO. - (2022), pp. 1-4. (Intervento presentato al convegno 2022 IEEE European Test Symposium (ETS) tenutosi a Barcelona (ESP) nel 23-27 May 2022) [10.1109/ETS54262.2022.9810441].
Real-Time Control-Flow Integrity for Multicore Mixed-Criticality IoT Systems
Eftekhari Moghadam, Vahid;Prinetto, Paolo;Roascio, Gianluca
2022
Abstract
The spread of the Internet of Things (IoT) and the use of smart control systems in many mission-critical or safety-critical applications domains, like automotive or aeronautical, make devices attractive targets for attackers. Nowadays, several of these are mixed-criticality systems, i.e., they run both high-criticality tasks (e.g., a car control system) and low-criticality ones (e.g., infotainment). High-criticality routines often employ Real-Time Operating Systems (RTOS) to enforce hard real-time requirements, while the tasks with lower constraints can be delegated to more generic-purpose operating systems (GPOS). Much of the control code for these devices is written in memory-unsafe languages such as C and C++. This makes them susceptible to powerful binary attacks, such as the famous Return-Oriented Programming (ROP). Control-Flow Integrity (CFI) is the most investigated security technique to protect against such threats. At now, CFI solutions for real-time embedded systems are not as mature as the ones for general-purpose systems, and even more, there is a lack of in-depth studies on how different operating systems with different security requirements and timing constraints can coexist on a single multicore platform. This paper aims at drawing attention to the subject, discussing the current scientific proposal, and in turn proposing a solution for an optimized asymmetric verification system for execution integrity. By using an embedded hypervisor, predefined cores could be dedicated to only high or low-criticality tasks, with the high-priority core being monitored by the lower-criticality core, relying on offline binary instrumentation and a light exchange of information and signals at runtime. The work also presents preliminary results about a possible implementation for multicore ARM platforms, running both RTOS and GPOS, both in terms of security and performance penalties.File | Dimensione | Formato | |
---|---|---|---|
conference_101719_cam_ready_a4.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
245.96 kB
Formato
Adobe PDF
|
245.96 kB | Adobe PDF | Visualizza/Apri |
Real-Time_Control-Flow_Integrity_for_Multicore_Mixed-Criticality_IoT_Systems.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2969412