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Abstract—The spread of the Internet of Things (IoT) and the
use of smart control systems in many mission-critical or safety-
critical applications domains, like automotive or aeronautical,
make devices attractive targets for attackers. Nowadays, several
of these are mixed-criticality systems, i.e., they run both high-
criticality tasks (e.g., a car control system) and low-criticality
ones (e.g., infotainment). High-criticality routines often employ
Real-Time Operating Systems (RTOS) to enforce hard real-time
requirements, while the tasks with lower constraints can be
delegated to more generic-purpose operating systems (GPOS).

Much of the control code for these devices is written in
memory-unsafe languages such as C and C++. This makes
them susceptible to powerful binary attacks, such as the famous
Return-Oriented Programming (ROP). Control-Flow Integrity
(CFI) is the most investigated security technique to protect
against such threats. At now, CFI solutions for real-time embed-
ded systems are not as mature as the ones for general-purpose
systems, and even more, there is a lack of in-depth studies on how
different operating systems with different security requirements
and timing constraints can coexist on a single multicore platform.

This paper aims at drawing attention to the subject, discussing
the current scientific proposal, and in turn proposing a solution
for an optimized asymmetric verification system for execution
integrity. By using an embedded hypervisor, predefined cores
could be dedicated to only high or low-criticality tasks, with the
high-priority core being monitored by the lower-criticality core,
relying on offline binary instrumentation and a light exchange
of information and signals at runtime. The work also presents
preliminary results about a possible implementation for multicore
ARM platforms, running both RTOS and GPOS, both in terms
of security and performance penalties.

Index Terms—IoT, internet of things, security, software se-
curity, control-flow integrity, operating systems, return-oriented
programming, ROP, JOP

I. INTRODUCTION

In recent times, the process of digitizing goods and services
used by citizens appears to be inexorable. The number of
connected embedded devices through the so-called Internet of
Things (IoT) has a progression that projects it to nearly triple
during the decade 2020-2030, reaching 25 billions [1]. By that
date, 8 billions of consumer devices for internet/multimedia,
such as smartphones, are expected to be running, and other use
cases that will account for one billion devices will be smart
logistics, smart infrastructures, and smart vehicles.

Such next-generation smart control systems are character-
ized by complex computing workloads, composed of tasks
that are also very different from each other. On smart cars,

for example, the onboard system consists of at least two
fundamental parts. On the one hand, it must offer a series
of graphic functions to the user through its touch screen,
interact with the video cameras and the multimedia system,
and others. Therefore, it needs advanced libraries and services
typically integrated into a general-purpose operating system
(GPOS). On the other hand, it must monitor and process in real
time the data coming from the sensors equipping the physical
parts of the machine, activate the ABS, or perform other
critical routines with precise periods of execution: for this, it
also needs to employ real-time operating systems (RTOS) for
the correct scheduling of tasks. What is outlined is therefore
a mixed-criticality (MC) software system, which requires
computing platforms able to support this heterogeneity. In
many cases, this is solved by adopting a hypervisor capable
of creating divided compartments over a single platform, with
operating systems dedicated to supporting tasks with different
requirements [2] [3].

In such a diffused digitalization scenario, the attack ex-
position surface becomes extremely vast and appealing to
malicious intruders, possibly interested in stealing sensitive
data, or in controlling/interrupting the provision of many
essential services. Beyond communications, applications and
operating systems themselves are at risk, as very often the
control code for these devices is written using the C language,
which is still the second most used language for embedded
programming in 2021 [4]. Although C offers high optimization
capabilities, the free use of memory pointers can lead to the
introduction of severe data corruption vulnerabilities [5] [6].
Because of these, powerful binary attacks can be carried out,
such as Return-Oriented Programming (ROP) [7], which can
force victim devices to execute completely arbitrary malware
[8].

Control-Flow Integrity [9] has been presented in literature
as the most promising technique to counter such a kind of
threats. The basic idea is to monitor at runtime each control-
flow transfer inside an application, by checking it against
a predefined model of allowed branches, the Control-Flow
Graph (CFG), obtained through offline static analysis of the
source or binary code. The literature has been lavish with
solutions of different nature for general-purpose systems [10]
[11] [12], and even on a commercial level, Intel has introduced
its own Control-Flow Enforcement Technology in its chips



[13]. On the other hand, the state of the art for special-
purpose systems is different. Despite the proposals, a stable
framework is still lacking, and additional problems on CFI
feasibility are to be considered. The introduction of Pointer
Authentication starting from ISA version 8.3 by ARM [14]
is certainly a positive step, but still not complete and, in any
case, not enabling for the many legacy applications based on
microcontrollers in consolidated use.

Issues are related, for example, to the presence of preemp-
tive schedulers that may interrupt the tasks of an RTOS at
any instant, thus invalidating the results of the offline static
analysis. Other issues derive from the limited resource avail-
ability or from the strict timing requirements, which collide
with the request for additional times for integrity checks. As
a strategy to overcome these limitations, one could think of
exploiting the possibilities of a mixed-criticality system, with
an operating system with laxer constraints that can allocate
tasks for monitoring the real-time operating system, and with
a hypervisor that provides the necessary protection guarantees
for the additional memory parts needed to execute the integrity
checks.

This paper intends to illustrate this solution concept, which
is currently under study for multicore ARM platforms with
hypervisor and general-purpose and real-time domains. Before
entering into details, the paper offers a proper background on
the topic. At the end, conclusions are drawn, and the work
to be done to reach a quantified evaluation of the proposal is
detailed.

II. THREAT MODEL

For the purposes of our research, it is assumed the presence
of a powerful attacker that can exploit several vulnerabilities
in the code of an embedded device. Thanks to them, he/she is
able to read and write its data memory. The code is assumed
to be stored in Flash and not writable at runtime, while the
data memory is assumed to be not executable as protected by
basic Write-XOR-Execute policy [15]. Therefore, the attacker
is for example capable of finding inside the executable code
a series of segments referred to as gadgets, made up of
very few instructions and all ending with a return or indirect
jump machine instruction [7]. Then, he/she can inject into
the memory a list of gadget addresses, and once the function
returns, or a first dispatcher branch is taken [16], the gadget
chain execution activates, and one after the other, all gadgets
are executed on the victim device.

III. CONTROL-FLOW INTEGRITY PRINCIPLES

The concept behind Control-Flow Integrity [9] is monitoring
the program at runtime to detect abnormal diversion from what
is stated in its Control- Flow Graph (CFG). This is a directed
graph where vertices are linear sequences of instructions
having no branches except at their end (namely basic blocks),
and edges are control-flow transfers that connect such blocks.
The CFG is computed ahead of the execution, through static
analysis of the source or the binary code, or through execution
profiling. This is commonly referred to as the offline phase.

The online phase represents instead the runtime protection,
aimed at verifying that branches individuated by the offline
phase are actually respected during the execution. To enforce
this, an entity must be instructed with the CFG information
at offline, and must be able to detect any violation at online
(namely, the CFI monitor). Binary instrumentation techniques
imply that the verification is performed by additional instruc-
tions, inserted in the online phase, and then performed by the
application itself (or by an external monitor) at runtime, which
rely on a system of labels that uniquely identify the destination
of a branch. The operations that are going to be instrumented
are the indirect control-flow transfers, i.e., branches with a
non-constant argument, as they are the only ones that can
be tampered with (namely, branch or call instructions with a
register operands, return instructions, or any other instruction
altering the value of the program counter).

One of the main drawbacks of using a complete CFG is
the possible overhead. For that reason, some solutions imple-
ment a simplified CFG, grouping basic blocks with similar
characteristics in a single vertex (e.g., entire functions). This
is coarse-grained CFI. Fine-grained CFI policies are instead
aimed at providing a fully-precise CFG, complete with every
possible valid target of every indirect branch.

A large number of CFI solutions exist for general-purpose
systems [10] [11] [17] [12] [18] [13]. Unfortunately, the
same level of maturity is not found for real-time systems.
The amount of additional resources required for protection
is in most cases unaffordable for these devices, and a deep
tradeoff on verification completeness towards coarse-grained
approaches leads to high risks from a security point of view.
Furthermore, if a degradation of execution times for CFI
checks can be tolerated in the GPOS domain, this does
not apply for RTOS, where computation tasks need to be
completed within precise times.

For these reasons, an ideal solution to guarantee CFI for
RTOS applications is comprised of the following features:

• Full forward and backward branches protection
(a.k.a. fine-grained CFI);

• Protection of the interrupt context, since hardware
interrupts can occur at any time, causing the execution
of a handling routine that cannot be predicted by any
static analysis [19];

• Uncompromised workload schedulability, i.e., ideally
negligible overhead, considered both in terms of perfor-
mance and code size.

IV. ASYMMETRIC MULTICORE CONTROL-FLOW
VERIFICATION

Due to the growing need to diversify the tasks of integrated
systems, and to improve performance by avoiding frequency
scaling, the most reasonable choice for new embedded applica-
tions seems to be adopting multicore architectures [20], possi-
bly with hypervisors that support the creation of statically-
divided application domains [2]. As already introduced, it
is desirable to drive the community to investigate solutions
exploiting the presence of multiple cores to guarantee CFI to



the part of the system that performs highly-critical tasks by
taking advantage of parallelization, without charging the cost
of the checks to the RTOS.

A hypervisor (such as Bao [3]) can be configured to
statically assign physical resources to two separate virtual
machines, one to host the RTOS and one to host the GPOS,
each running on a dedicated CPU and having its portion of
memory. In addition, the hypervisor can reserve a portion of
its storage to act as shared memory between the two cores
(Figure 1). The RTOS with its tasks can be considered as a
single binary to be instrumented according to the techniques
described above. The enforcement is carried out according to
the methodology described in [21], through a system of unique
coupled labels, referring to the source and destination of the
branches. In addition to this, labels are also created to uniquely
identify the caller of a procedure, to enforce backward edges.
Finally, to support interrupt and scheduler awareness, a secure
saving of context registers is applied to the input of interrupt
handling routines. The algorithm used for the instrumentation
is the one described in [22].

Fig. 1: The described architecture for supporting multicore
control-flow verification.

Instrumentations do not contain validation code, but are
represented by a minimal group of instructions that are only
needed to transfer sensitive information (concerning the po-
sition in the code or the value of a context register) on the
shared memory. At that point, through an atomic signal to the
hypervisor, the monitoring task in the context of the GPOS on
the other core is invoked and executed.

The monitor task in the GPOS partition has the priority to
preempt all other tasks when invoked. Therefore, the checks
are carried out in parallel with the critical execution on the
other side, without compromising its schedulability. However,
these occur in a few clock cycles after the branch, thus
managing to stop any attack attempt in the bud. The checks are
based on 3 main memory sections present in the private storage
of the task monitor: (i) a table containing the allowed edges,
in the form of coupled source-destination labels, accessed as a
ROM hash table [21], (ii) a label call stack to store destination
labels associated with calls and verify the identity of the last
caller on return, and (iii) a register call stack to hold context
in the event of a sudden interrupt.

When allocating memories of the two OS, the hypervisor
takes care of duly protecting the shared memory portion
(to have unidirectional flow and not to be used outside the
protocol) and the private memory portion of the monitor task
(not to be accessed by other tasks).

At now, this technique has only been evaluated in theory,
based on rough estimates of the execution times of the ARM
instructions necessary for the instrumentation. To these, the
time of the Virtual Inter Processor Interrupt (vIPI) managed
by the hypervisor must be added, which can have variable
times depending on the implementation, the platform, and its
support for virtualization in hardware. Future work and tests
need to be done in this regard.

V. RELATED WORK

As already introduced, the current scientific proposal of CFI
solutions for RTOS, in addition to not being remarkably rich,
presents a series of problems mostly related to scheduling and
the support capabilities of resource-constrained platforms. All
the examinated solutions incurred in the trade-off between
security and overhead, although in different ways and to
different degrees.

In RECFISH [23], integrity checks are implemented through
binary instrumentation for forward branches and the use of a
shadow stack [24] for backward branches. Edges are replaced
by trampolines towards the instrumentation code, which is
located in a special section. Although it has high coverage
as it is fine-grained, RECFISH appears to have no protection
for interrupts, which run in privileged mode and are thus
a possible vulnerability [19]. Plus, experiments showed that
15% of workloads were not schedulable anymore after the
instrumentation, with an overhead of 30% for the worst cases.

In TrackOS [25], a monitoring task is created and scheduled
along with all the other “normal” tasks. Therefore, CFI checks
only happen when scheduled, depending on the workload
definition, instead of happening at every vulnerable control-
flow transfer. While it does bring security enhancements with
minimal impact on workload schedulability, TrackOS does not
provide a sufficient level of security: no control-flow violation
is detected as long as no context switch to the monitoring task
occurs.

Then, solutions that make use of the Pointer Authentication
(PA) facility introduced by ARM [14] have been proposed.
This new feature adds a hardware-assisted way to sign point-
ers with an unreadable unique code, that will be used for
authentication before consuming them. Camouflage [26] uses
PA to sign function pointers and return addresses to protect, re-
spectively, forward and backward edges in kernel code. Other
than a non-negligible overhead ranging from 10% to 30%,
Camouflage also lacks interrupt context protection. Authen-
tication and branching are not done as an atomic operation,
but are instead executed by separate instructions, creating the
possibility of time-of-check-to-time-of-use (TOCTOU) attacks
[27].

PATTER (Pointer AuThenTication for kERnel) [28] works
together with LLVM to insert instrumentation right at its



Intermediate Representation level and protect both forward and
backward branches. All pointers used for forward branches are
signed and then stored in memory, and when they need to be
used, they are loaded from memory and then authenticated.
When branching, the blraa instruction is used to guarantee
atomicity. That instruction authenticates the pointer before a
branch-and-link operation, making TOCTOU attacks impossi-
ble to be executed. As for backward edges, prologues to sign
the return value are put at the start of each function, and to
return the atomic retaa is used, to authenticate and branch
in a single time. Also for PATTER, the overhead reaches 20%.
Other problems arise from the the possible presence of several
corner-cases regarding function pointer generation, like the use
of pointer arithmetic, pointers holding physical addresses, and
pointers inside of unions. All of these cases are not correctly
handled by the algorithm, so they need specific workarounds
which need to be kernel-dependent.

VI. CONCLUSIONS

This paper has presented a research hot topic in the IoT
domain, on the protection of real-time software against binary
attacks in a multicore environment where a general-purpose
partition also exists. The paper has offered bullets on the
context and on the importance of an investigation in this sense.
After that, preliminary arguments made on a possible applica-
tion of the solution concept have been done. To give greater
vigor to the study, the results of the practical implementation
of the technique are expected, from which it will be possible
to deduce the real overhead cost on the system, as well as the
actual security enhancement based on the results of standard
evaluation benchmark execution [29].
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