Biological beings are intrinsically resilient. This means that they are able to continue to perform a task even if they are partially damaged or if some parts of them don’t work as expected. This is true also for the human brain. The research in these last years, however, has been concentrated on Artificial Intelligence (AI), to try to emulate the capabilities of the brain to improve itself, learn- ing from experience. Artificial Resilience (AR) is something not explored in detail yet. This four pages abstract present a Ph.D. path dedicated to the extensive study of Artificial Resilience in all its aspects. The study will target neuromorphic systems, in particu- lar Spiking Neural Networks, an emerging type of neural network models that try to mimic the behavior of a biological brain in a faithful way. In addition to this they are in general more suitable for an hardware acceleration. The goal of the Ph.D. is to realize a com- plete neuromorphic accelerator, configurable and resilient, and to apply it to improve the resilience of other electronic systems. Such an accelerator will be able to target area- and power-constrained applications in mission-critical environments, providing a more efficient alternative to classical techniques like Error Correction Codes (ECC) or redundancy to improve the robustness of a complex electronic system.
Artificial Resilience in neuromorphic systems / Carpegna, Alessio; Di Carlo, Stefano; Savino, Alessandro. - ELETTRONICO. - (2022), pp. 112-114. (Intervento presentato al convegno International Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies (HEART) 2022 tenutosi a Tsukuba (JPN) nel June 9-10, 2022) [10.1145/3535044.3535062].
Artificial Resilience in neuromorphic systems
Carpegna, Alessio;Di Carlo, Stefano;Savino, Alessandro
2022
Abstract
Biological beings are intrinsically resilient. This means that they are able to continue to perform a task even if they are partially damaged or if some parts of them don’t work as expected. This is true also for the human brain. The research in these last years, however, has been concentrated on Artificial Intelligence (AI), to try to emulate the capabilities of the brain to improve itself, learn- ing from experience. Artificial Resilience (AR) is something not explored in detail yet. This four pages abstract present a Ph.D. path dedicated to the extensive study of Artificial Resilience in all its aspects. The study will target neuromorphic systems, in particu- lar Spiking Neural Networks, an emerging type of neural network models that try to mimic the behavior of a biological brain in a faithful way. In addition to this they are in general more suitable for an hardware acceleration. The goal of the Ph.D. is to realize a com- plete neuromorphic accelerator, configurable and resilient, and to apply it to improve the resilience of other electronic systems. Such an accelerator will be able to target area- and power-constrained applications in mission-critical environments, providing a more efficient alternative to classical techniques like Error Correction Codes (ECC) or redundancy to improve the robustness of a complex electronic system.File | Dimensione | Formato | |
---|---|---|---|
phDworkInProgress.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
393.56 kB
Formato
Adobe PDF
|
393.56 kB | Adobe PDF | Visualizza/Apri |
3535044.3535062.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
451.95 kB
Formato
Adobe PDF
|
451.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2962854