In this paper, Subproblems A, B and C of the NASA Langley Uncertainty Quantification (UQ) Challenge on Optimization Under Uncertainty are addressed. Subproblem A deals with the model calibration and (aleatory and epistemic) uncertainty quantification of a subsystem, where a characterization of the parameters of the subsystem is sought by resorting to a limited number (100) of observations. Bayesian inversion is here proposed to address this task. Subproblem B requires the identification and ranking of those (epistemic) parameters that are more effective in improving the predictive ability of the computational model of the subsystem (and, thus, that deserve a refinement in their uncertainty model). Two approaches are here compared: the first is based on a sensitivity analysis within a factor prioritization setting, whereas the second employs the Energy Score (ES) as a multivariate generalization of the Continuous Rank Predictive Score (CRPS). Since the output of the subsystem is a function of time, both subproblems are addressed in the space defined by the orthonormal bases resulting from a Singular Value Decomposition (SVD) of the subsystem observations: in other words, a multivariate dynamic problem in the real domain is translated into a multivariate static problem in the SVD space. Finally, Subproblem C requires identifying the (epistemic) reliability (resp., failure probability) bounds of a given system design point. The issue is addressed by an efficient combination of: (i) Monte Carlo Simulation (MCS) to propagate the aleatory uncertainty described by probability distributions; and (ii) Genetic Algorithms (GAs) to solve the optimization problems related to the propagation of epistemic uncertainty by interval analysis.
Computational methods for system optimization under uncertainty / Pedroni, N.. - ELETTRONICO. - (2020), pp. 1119-1126. ( 30th European Safety and Reliability Conference, ESREL 2020 and 15th Probabilistic Safety Assessment and Management Conference, PSAM 2020 Venice (Italy) 2020).
Computational methods for system optimization under uncertainty
Pedroni N.
2020
Abstract
In this paper, Subproblems A, B and C of the NASA Langley Uncertainty Quantification (UQ) Challenge on Optimization Under Uncertainty are addressed. Subproblem A deals with the model calibration and (aleatory and epistemic) uncertainty quantification of a subsystem, where a characterization of the parameters of the subsystem is sought by resorting to a limited number (100) of observations. Bayesian inversion is here proposed to address this task. Subproblem B requires the identification and ranking of those (epistemic) parameters that are more effective in improving the predictive ability of the computational model of the subsystem (and, thus, that deserve a refinement in their uncertainty model). Two approaches are here compared: the first is based on a sensitivity analysis within a factor prioritization setting, whereas the second employs the Energy Score (ES) as a multivariate generalization of the Continuous Rank Predictive Score (CRPS). Since the output of the subsystem is a function of time, both subproblems are addressed in the space defined by the orthonormal bases resulting from a Singular Value Decomposition (SVD) of the subsystem observations: in other words, a multivariate dynamic problem in the real domain is translated into a multivariate static problem in the SVD space. Finally, Subproblem C requires identifying the (epistemic) reliability (resp., failure probability) bounds of a given system design point. The issue is addressed by an efficient combination of: (i) Monte Carlo Simulation (MCS) to propagate the aleatory uncertainty described by probability distributions; and (ii) Genetic Algorithms (GAs) to solve the optimization problems related to the propagation of epistemic uncertainty by interval analysis.| File | Dimensione | Formato | |
|---|---|---|---|
|
5536.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
245.42 kB
Formato
Adobe PDF
|
245.42 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2962343
