The automobile industry is no longer relying on pure mechanical systems; instead, it benefits from advanced Electronic Control Units (ECUs) in order to provide new and complex functionalities in the effort to move toward fully connected cars. However, connected cars provide a dangerous playground for hackers. Vehicles are becoming increasingly vulnerable to cyber attacks as they come equipped with more connected features and control systems. This situation may expose strategic assets in the automotive value chain. In this scenario, the Controller Area Network (CAN) is the most widely used communication protocol in the automotive domain. However, this protocol lacks encryption and authentication. Consequently, any malicious/hijacked node can cause catastrophic accidents and financial loss. Starting from the analysis of the vulnerability connected to the CAN communication protocol in the automotive domain, this paper proposes EXT-TAURUM P2T a new low-cost secure CAN-FD architecture for the automotive domain implementing secure communication among ECUs, a novel key provisioning strategy, intelligent throughput management, and hardware signature mechanisms. The proposed architecture has been implemented, resorting to a commercial Multi-Protocol Vehicle Interface module, and the obtained results experimentally demonstrate the approach’s feasibility.
EXT-TAURUM P2T: an Extended Secure CAN-FD Architecture for Road Vehicles / Oberti, F.; Savino, A.; Sanchez, E.; Parisi, F.; Di Carlo, S.. - In: IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY. - ISSN 1530-4388. - STAMPA. - 22:2(2022), pp. 98-110. [10.1109/TDMR.2022.3157000]
EXT-TAURUM P2T: an Extended Secure CAN-FD Architecture for Road Vehicles
Oberti F.;Savino A.;Sanchez E.;Di Carlo S.
2022
Abstract
The automobile industry is no longer relying on pure mechanical systems; instead, it benefits from advanced Electronic Control Units (ECUs) in order to provide new and complex functionalities in the effort to move toward fully connected cars. However, connected cars provide a dangerous playground for hackers. Vehicles are becoming increasingly vulnerable to cyber attacks as they come equipped with more connected features and control systems. This situation may expose strategic assets in the automotive value chain. In this scenario, the Controller Area Network (CAN) is the most widely used communication protocol in the automotive domain. However, this protocol lacks encryption and authentication. Consequently, any malicious/hijacked node can cause catastrophic accidents and financial loss. Starting from the analysis of the vulnerability connected to the CAN communication protocol in the automotive domain, this paper proposes EXT-TAURUM P2T a new low-cost secure CAN-FD architecture for the automotive domain implementing secure communication among ECUs, a novel key provisioning strategy, intelligent throughput management, and hardware signature mechanisms. The proposed architecture has been implemented, resorting to a commercial Multi-Protocol Vehicle Interface module, and the obtained results experimentally demonstrate the approach’s feasibility.File | Dimensione | Formato | |
---|---|---|---|
TAURUM P2T Secure CAN BUS Architecture Camera Extented paper.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
2.69 MB
Formato
Adobe PDF
|
2.69 MB | Adobe PDF | Visualizza/Apri |
EXT-TAURUM_P2T_An_Extended_Secure_CAN-FD_Architecture_for_Road_Vehicles.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
4.68 MB
Formato
Adobe PDF
|
4.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2962313