To implement a Machine Learning (ML) model in hardware (Hw), usually a first Design Space Exploration (DSE) optimizes the model hyper-parameters in search of the best ML performance, while a second DSE finds the configuration with the best Hw performance. Multiple iterations of these steps might be needed as the optimal ML model may not necessarily be implementable. To reduce the design-time and provide the designer with a single exploration environment, we propose a general framework based on Bayesian Optimization (BO) and High-Level Synthesis (HLS), which performs at once both DSEs generating efficient Pareto curves in the space of ML and Hw performance.

Efficient Training and Hardware Co-design of Machine Learning Models / Mansoori, Mohammad Amir; Casu, Mario R.. - ELETTRONICO. - 866:(2022), pp. 243-248. (Intervento presentato al convegno International Conference on Applications in Electronics Pervading Industry, Environment and Society (Applepies), 2021 tenutosi a Pisa, Italy nel Sep. 2021) [10.1007/978-3-030-95498-7_34].

Efficient Training and Hardware Co-design of Machine Learning Models

Mansoori, Mohammad Amir;Casu, Mario R.
2022

Abstract

To implement a Machine Learning (ML) model in hardware (Hw), usually a first Design Space Exploration (DSE) optimizes the model hyper-parameters in search of the best ML performance, while a second DSE finds the configuration with the best Hw performance. Multiple iterations of these steps might be needed as the optimal ML model may not necessarily be implementable. To reduce the design-time and provide the designer with a single exploration environment, we propose a general framework based on Bayesian Optimization (BO) and High-Level Synthesis (HLS), which performs at once both DSEs generating efficient Pareto curves in the space of ML and Hw performance.
2022
978-3-030-95497-0
978-3-030-95498-7
File in questo prodotto:
File Dimensione Formato  
ApplePies_CameraReady.pdf

Open Access dal 10/04/2023

Descrizione: Articolo principale
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF Visualizza/Apri
Casu-EfficientTraining.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2961823