We discuss the general form of the transfer functions of linear lumped circuits. We show that an arbitrary transfer function defined on such circuits has a functional dependence on individual circuit parameters that is rational, with multi-linear numerator and denominator. This result demonstrates that rational polynomial chaos expansions provide more suitable models than standard polynomial chaos for the uncertainty quantification of this class of circuits.
On the Exactness of Rational Polynomial Chaos Formulation for the Uncertainty Quantification of Linear Circuits in the Frequency Domain / Manfredi, Paolo; Grivet-Talocia, Stefano. - STAMPA. - 36:(2021), pp. 23-31. (Intervento presentato al convegno Scientific Computing in Electrical Engineering (SCEE) tenutosi a Eindhoven, The Netherlands nel February 2020) [10.1007/978-3-030-84238-3_3].
On the Exactness of Rational Polynomial Chaos Formulation for the Uncertainty Quantification of Linear Circuits in the Frequency Domain
Manfredi, Paolo;Grivet-Talocia, Stefano
2021
Abstract
We discuss the general form of the transfer functions of linear lumped circuits. We show that an arbitrary transfer function defined on such circuits has a functional dependence on individual circuit parameters that is rational, with multi-linear numerator and denominator. This result demonstrates that rational polynomial chaos expansions provide more suitable models than standard polynomial chaos for the uncertainty quantification of this class of circuits.File | Dimensione | Formato | |
---|---|---|---|
manfredi-SCEE-Proceedings-final.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
537.62 kB
Formato
Adobe PDF
|
537.62 kB | Adobe PDF | Visualizza/Apri |
Manfredi-Nilde.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.97 MB
Formato
Adobe PDF
|
1.97 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2960957