We discuss the general form of the transfer functions of linear lumped circuits. We show that an arbitrary transfer function defined on such circuits has a functional dependence on individual circuit parameters that is rational, with multi-linear numerator and denominator. This result demonstrates that rational polynomial chaos expansions provide more suitable models than standard polynomial chaos for the uncertainty quantification of this class of circuits.

On the Exactness of Rational Polynomial Chaos Formulation for the Uncertainty Quantification of Linear Circuits in the Frequency Domain / Manfredi, Paolo; Grivet-Talocia, Stefano. - STAMPA. - 36:(2021), pp. 23-31. (Intervento presentato al convegno Scientific Computing in Electrical Engineering (SCEE) tenutosi a Eindhoven, The Netherlands nel February 2020) [10.1007/978-3-030-84238-3_3].

On the Exactness of Rational Polynomial Chaos Formulation for the Uncertainty Quantification of Linear Circuits in the Frequency Domain

Manfredi, Paolo;Grivet-Talocia, Stefano
2021

Abstract

We discuss the general form of the transfer functions of linear lumped circuits. We show that an arbitrary transfer function defined on such circuits has a functional dependence on individual circuit parameters that is rational, with multi-linear numerator and denominator. This result demonstrates that rational polynomial chaos expansions provide more suitable models than standard polynomial chaos for the uncertainty quantification of this class of circuits.
2021
978-3-030-84237-6
978-3-030-84238-3
File in questo prodotto:
File Dimensione Formato  
manfredi-SCEE-Proceedings-final.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 537.62 kB
Formato Adobe PDF
537.62 kB Adobe PDF Visualizza/Apri
Manfredi-Nilde.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2960957