We study Fourier integral operators with Shubin amplitudes and quadratic phase functions associated to twisted graph Lagrangians with respect to symplectic matrices. We factorize such an operator as the composition of a Weyl pseudodifferential operator and a metaplectic operator and derive a characterization of its Schwartz kernel in terms of phase space estimates. Extending the conormal distributions in the Shubin calculus, we define an adapted notion of Lagrangian tempered distribution. We show that the kernels of Fourier integral operators are identical to Lagrangian distributions with respect to twisted graph Lagrangians.

Lagrangian distributions and Fourier integral operators with quadratic phase functions and Shubin amplitudes / Cappiello, Marco; Schulz, René; Wahlberg, Patrik. - In: PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES. - ISSN 0034-5318. - 56:3(2020), pp. 561-602. [10.4171/PRIMS/56-3-5]

Lagrangian distributions and Fourier integral operators with quadratic phase functions and Shubin amplitudes

Cappiello, Marco;Wahlberg, Patrik
2020

Abstract

We study Fourier integral operators with Shubin amplitudes and quadratic phase functions associated to twisted graph Lagrangians with respect to symplectic matrices. We factorize such an operator as the composition of a Weyl pseudodifferential operator and a metaplectic operator and derive a characterization of its Schwartz kernel in terms of phase space estimates. Extending the conormal distributions in the Shubin calculus, we define an adapted notion of Lagrangian tempered distribution. We show that the kernels of Fourier integral operators are identical to Lagrangian distributions with respect to twisted graph Lagrangians.
File in questo prodotto:
File Dimensione Formato  
PRIMS-2020-056-003-05.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 627.71 kB
Formato Adobe PDF
627.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1802.04729.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 391.87 kB
Formato Adobe PDF
391.87 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2960947