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LAGRANGIAN DISTRIBUTIONS AND FOURIER INTEGRAL

OPERATORS WITH QUADRATIC PHASE FUNCTIONS AND

SHUBIN AMPLITUDES

MARCO CAPPIELLO, RENÉ SCHULZ, AND PATRIK WAHLBERG

Abstract. We study Fourier integral operators with Shubin amplitudes and quadratic
phase functions associated to twisted graph Lagrangians with respect to symplectic
matrices. We factorize such an operator as the composition of a Weyl pseudodifferential
operator and a metaplectic operator and derive a characterization of its Schwartz kernel
in terms of phase space estimates. Extending the conormal distributions in the Shubin
calculus, we define an adapted notion of Lagrangian tempered distribution. We show
that the kernels of Fourier integral operators are identical to Lagrangian distributions
with respect to twisted graph Lagrangians.

1. Introduction

Lagrangian distributions were introduced by Hörmander [16, Vol. IV] as a framework
for a global theory of Fourier integral operators (FIOs). FIOs are defined as operators
whose Schwartz kernel is a Lagrangian distribution associated to a canonical relation.
Many of the properties of FIOs can be deduced from the study of their kernels. A
special case of Lagrangian distributions are the conormal distributions, cf. [16, Vol. III],
which include the kernels of pseudodifferential operators. Lagrangian and conormal
distributions are defined in terms of local Besov norm estimates which are required to
be preserved under the action of certain pseudodifferential operators. These estimates
reflect properties of the amplitudes of the operators, which are in the classical setting
the Hörmander symbols.

In this paper we consider another fundamental class of operators in the theory of
partial differential equations, the so called Shubin class [24]. A Shubin symbol a ∈
Γmρ (R

2d), with m ∈ R and 0 6 ρ 6 1, satisfies the estimates
∣∣∣∂αx ∂βξ a(x, ξ)

∣∣∣ . (1 + |x|+ |ξ|)m−ρ|α+β|, (x, ξ) ∈ T ∗
R
d, α, β ∈ N

d.

Shubin symbols for pseudodifferential operators are interesting not least since they en-
compass the symbol a(x, ξ) = |x|2 + |ξ|2 of the harmonic oscillator. The Shubin sym-
bols behave isotropically on the phase space T ∗

R
d, which distinguishes them from the

Hörmander symbols. The Shubin class has been intensively studied by many authors,
e.g. [1–5,14,15,17,20–24].
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Concerning FIOs with Shubin amplitudes, the main contributions include Asada and
Fujiwara [1] and Helffer and Robert [14, 15], who developed the calculus and the spec-
tral theory, and gave applications to PDEs. They used real phase functions that are
generalizations of quadratic forms, with a prescribed condition of non-degeneracy. Such
phase functions deviate from Hörmander FIO phase functions that are homogeneous of
degree one in the covariable. More recently Cordero et al. [8–10] and Tataru [25] have
contributed to the field of FIOs with quadratic type phase functions, in the former case
using amplitudes from modulation spaces rather than Shubin type amplitudes.

A theory of conormal and Lagrangian distributions for FIOs with Shubin amplitudes
and quadratic phase functions, parallel to Hörmander’s theory [16, Vol. IV], and re-
flecting the peculiar properties of the kernels of these operators, is still missing in the
literature.

In [6] we started to fill this gap by defining the space of Γ-conormal tempered distribu-
tions, adapted to Shubin pseudodifferential operators. The definition concerns estimates
of certain differential operators acting on a Fourier–Bros–Iagolnitzer (FBI) transform of
the distribution. Inspired by [16, Chapter 18.2] we showed that the kernels of Shubin
pseudodifferential operators are exactly Γ-conormal distributions with respect to the
diagonal subspace in R

d × R
d, cf. [6, Example 5.2].

In the present paper we extend the Γ-conormal to Γ-Lagrangian distributions and
corresponding FIOs. A main result extends [6, Example 5.2] from pseudodifferential
operators to FIOs and reads as follows. The space of kernels of FIOs with Shubin
amplitude and quadratic phase function associated with a twisted graph Lagrangian with
respect to a symplectic matrix, is identical to the space of Γ-Lagrangian distributions
on R

2d with respect to the same twisted graph Lagrangian.
Conceptually this result is a Shubin version of a fundamental result for classical FIOs

with phase function that is homogeneous of degree one in the covariable, cf. [16, Chap-
ter 25]. Indeed FIOs are in [16, Definition 25.2.1] defined as operators whose kernel are
Lagrangian with respect to a twisted canonical relation. Lagrangian distributions are
shown to be locally representable as oscillatory integrals, and vice versa. Our approach
is the opposite: We define Shubin FIOs using oscillatory integrals and then we prove
that their kernels are Γ-Lagrangian distributions. But the conclusion that the kernels of
FIOs are exactly Lagrangian distributions remains the same.

The key tools in our approach are an FBI type transform, used already in [6], and
metaplectic operators. The idea to study estimates in the phase space of an FBI trans-
form is suggested by the isotropic behavior of the amplitudes, and by analogous estimates
proved for similar operators, cf. [25]. This approach leads us to restrict to quadratic
phase functions whose associated Lagrangian is a twisted graph Lagrangian in T ∗

R
2d

with respect to a symplectic matrix. Under this restriction the calculus of the FIOs
turns out to be contained in the analysis in [1,14]. However, we refine those calculi with
respect to behavior under composition. In our composition result Proposition 4.10 we
obtain homomorphism with respect to the symplectic matrices associated to the phase
functions.

This feature turns out to have many consequences. The most important consequence
is the factorization result Theorem 4.15 which says that an FIO can be factorized as
the product of a metaplectic operator corresponding to the symplectic matrix defining
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the phase function, and a Shubin pseudodifferential operator. A further consequence are
phase space estimates of the FBI transform of the kernels of FIOs.

The class of FIOs we study is closed under composition and adjoint, and contains the
metaplectic group. Our composition result Proposition 4.10 generalizes the particular
case of Hörmander’s composition theorem [18, Proposition 5.9] when the phase functions
are real. We extend this special case in [18] to non-trivial amplitudes. This approach is
quite different from the techniques used in [1, 14].

In the recent paper [7] we apply the results from this paper to initial value Cauchy
problems for Schrödinger type evolution equations with Hamiltonian given by the sum
of a real homogeneous quadratic form and a pseudodifferential perturbation from the
Shubin class.

The paper is organized as follows. In Section 2 we recall an FBI type transform,
and some basic facts on Shubin pseudodifferential operators and metaplectic operators.
Then we study oscillatory integrals with Shubin amplitudes and quadratic real-valued
phase functions in Section 3. In Section 4 we define the FIOs that we study, and we
compare our assumptions to [1, 14]. We show that FIOs are closed under composition,
which leads to the central result that every FIO can be factored as the composition of
a metaplectic operator and a Weyl pseudodifferential operator of Shubin type. Section
5 is devoted to phase space analysis of kernels of FIOs in terms of estimates on the FBI
transform. We define Γ-Lagrangian distributions in the Shubin framework in Section
6 and we study the microlocal properties of these distributions, the action of FIOs on
them, and phase space estimates of the FBI transform. In Section 7 we prove that the
Schwartz kernels of the FIOs are identical to the Γ-Lagrangian distributions associated
with the twisted graph Lagrangian.

2. Preliminaries

Basic notation. An open ball in R
d is denoted Br(y) = {x ∈ R

d : |x−y| < r} ⊆ R
d for

y ∈ R
d and r > 0, and we write Br(0) = Br. The gradient operator with respect to x ∈

R
d is denoted ∇x, and we write ∇xf(x) = f ′x(x). We use S (Rd) and S ′(Rd) to denote

the Schwartz space of rapidly decaying smooth functions, and its dual the tempered
distributions, respectively. We write (f, g) for the sesquilinear pairing, conjugate linear
in the second argument, between a distribution f and a test function g, as well as the
L2-standard scalar product if f, g ∈ L2(Rd).

The symbols Tx0u(x) = u(x − x0) and Mξu(x) = ei〈x,ξ〉u(x), where 〈·, ·〉 denotes the

inner product on R
d, are used for translation by x0 ∈ R

d and modulation by ξ ∈ R
d,

respectively, applied to functions or distributions. For x ∈ R
d we use 〈x〉 =

√
1 + |x|2.

Peetre’s inequality is

(2.1) 〈x+ y〉s 6 Cs〈x〉
s〈y〉|s| x, y ∈ R

d, Cs > 0, s ∈ R.

We write d̄x = (2π)−ddx for the dual Lebesgue measure. The notation f(x) . g(x)
means f(x) 6 Cg(x) for some C > 0 for all x in the domain of f and of g. If f(x) .
g(x) . f(x) then we write f(x) ≍ g(x).

The Fourier transform for f ∈ S (Rd) is normalized as

Ff(ξ) = f̂(ξ) = (2π)−d/2
∫

Rd

f(x)e−i〈x,ξ〉 dx
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which makes it unitary on L2(Rd). The partial Fourier transform with respect to a
vector variable indexed by j is denoted Fj .

The orthogonal projection on a linear subspace Y ⊆ R
d is denoted πY . We denote

by Md1×d2(R) the space of d1 × d2 matrices with real entries, by GL(d,R) ⊆ Md×d(R)
the group of invertible matrices, and by O(d) ⊆ GL(d,R) the subgroup of orthogonal
matrices. The determinant of A ∈ Md×d(R) is |A|. If f is a function on R

d and A ∈
GL(d,R) the pullback is denoted A∗f = f ◦ A.

An integral transform of FBI type. The following integral transform has been used
extensively in [6] and is fundamental also for this article. For more information see [6].

Definition 2.1. Let u ∈ S ′(Rd) and let g ∈ S (Rd) \ {0}. The transform u 7→ Tgu is

Tgu(x, ξ) = (2π)−d/2(u, TxMξg), x, ξ ∈ R
d.

If u ∈ S (Rd) then Tgu ∈ S (R2d) by [13, Theorem 11.2.5]. The adjoint T ∗
g is defined

by (T ∗
g U, f) = (U,Tgf) for U ∈ S ′(R2d) and f ∈ S (Rd). When U is a polynomially

bounded measurable function we write

T ∗
g U(y) = (2π)−d/2

∫

R2d

U(x, ξ)TxMξg(y) dxdξ

where the integral is defined weakly so that (T ∗
g U, f) = (U,Tgf)L2 for f ∈ S (Rd).

Proposition 2.2. [13, Theorem 11.2.3] Let u ∈ S ′(Rd) and let g ∈ S (Rd) \ 0. Then
Tgu ∈ C∞(R2d) and there exists N ∈ N such that

|Tgu(x, ξ)| . 〈(x, ξ)〉N , (x, ξ) ∈ R
2d.

We have u ∈ S (Rd) if and only if for any N > 0

|Tgu(x, ξ)| . 〈(x, ξ)〉−N , (x, ξ) ∈ R
2d.

The transform Tg is closely related to the short-time Fourier transform [13]

Vgu(x, ξ) = (2π)−d/2(u,MξTxg), x, ξ ∈ R
d,

namely Tgu(x, ξ) = ei〈x,ξ〉Vgu(x, ξ). If g, h ∈ S (Rd) then

T ∗
h Tgu = (h, g)u, u ∈ S

′(Rd),

and thus ‖g‖−2
L2 T

∗
g Tgu = u for g ∈ S (Rd) \ 0, cf. [13].

Finally we recall the definition of the Gabor wave front set, cf. [17, 22].

Definition 2.3. If u ∈ S ′(Rd) and g ∈ S (Rd)\0 then z0 ∈ T ∗
R
d\0 satisfies z0 /∈ WF(u)

if there exists an open cone V ⊆ T ∗
R
d \ 0 containing z0, such that for any N ∈ N there

exists CV,g,N > 0 such that |Tgu(z)| 6 CV,g,N〈z〉
−N when z ∈ V .

The Gabor wave front set is hence a closed conic subset of T ∗
R
d \ 0.
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Weyl pseudodifferential operators and metaplectic operators. We use pseudo-
differential operators in the Weyl calculus. Such an operator is defined by a symbol a
defined on R

2d as

aw(x,D)f(x) =

∫

R2d

ei〈x−y,ξ〉a ((x+ y)/2, ξ) f(y) d̄ξ dy.

We will later use Shubin symbols, but for now it suffices to note that the Weyl quanti-
zation extends by the Schwartz kernel theorem to a ∈ S ′(R2d), and then gives rise to a
continuous linear operator aw(x,D) : S (Rd) → S ′(Rd). The space of Weyl pseudodif-
ferential operators with symbols in a space U ⊆ S ′(R2d) is denoted OPw U .

TheWeyl product a#b is the product on the symbol level corresponding to composition
of operators,

(a#b)w(x,D) = aw(x,D)bw(x,D)

when the composition is well defined. The (Schwartz) kernel of the operator aw(x,D) is

(2.2) Ka(x, y) =

∫

Rd

ei〈x−y,ξ〉a ((x+ y)/2, ξ) d̄ξ

interpreted as a partial inverse Fourier transform of a, followed by a change of variables,
when a ∈ S ′(R2d).

For a ∈ S ′(R2d) and f, g ∈ S (Rd) we have

(2.3) (aw(x,D)f, g) = (2π)−d/2(a,W (g, f))

where

(2.4) W (g, f)(x, ξ) = (2π)−d/2
∫

Rd

g(x+ y/2)f(x− y/2) e−i〈y,ξ〉 dy ∈ S (R2d)

is the Wigner distribution [11,13].
We view T ∗

R
d as a symplectic vector space equipped with the canonical symplectic

form

(2.5) σ((x, ξ), (x′, ξ′)) = 〈x′, ξ〉 − 〈x, ξ′〉, (x, ξ), (x′, ξ′) ∈ T ∗
R
d.

A Lagrangian (subspace) [16] is a linear subspace Λ ⊆ T ∗
R
d of dimension d such that

σ(X,Y ) = 0, X, Y ∈ Λ.

The real symplectic group Sp(d,R) is the set of matrices in GL(2d,R) that leaves
σ invariant. To each χ ∈ Sp(d,R) is associated an operator µ(χ) which is unitary on
L2(Rd), and determined up to a complex factor of modulus one, such that

(2.6) µ(χ)−1aw(x,D)µ(χ) = (a ◦ χ)w(x,D), a ∈ S
′(R2d)

(cf. [11,16]). The operators µ(χ) are homeomorphisms on S and on S ′, and are called
metaplectic operators.

The metaplectic representation is the mapping Sp(d,R) ∋ χ 7→ µ(χ) which is a ho-
momorphism modulo sign

(2.7) µ(χ1)µ(χ2) = ±µ(χ1χ2), χ1, χ2 ∈ Sp(d,R).

Two ways to overcome the sign ambiguity are to pass to a double-valued representation
[11], or to a representation of the so called two-fold covering group of Sp(d,R). The
latter group is called the metaplectic group Mp(d,R). The two-to-one projection π :
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Mp(d,R) → Sp(d,R) is µ(χ) 7→ χ whose kernel is {±1}. The sign ambiguity may be
fixed (hence it is possible to choose a section of π) along a continuous path R ∋ t 7→
χt ∈ Sp(d,R). This involves the so called Maslov factor [19].

Let ψ0 = π−d/4e−|x|2/2, x ∈ R
d. A localization operator [20] with symbol a ∈ S ′(R2d)

is defined by

(Aau, f) = (aTψ0
,Tψ0

f), u, f ∈ S (Rd).

We have (cf. [20, Section 1.7.2]) Aa = bw(x,D) where

b = π−de−|·|2 ∗ a.

3. Oscillatory integrals with respect to quadratic phase functions and

Shubin amplitudes

In this section we study oscillatory integrals of the form

(3.1) Kϕ,a(x, y) =

∫

RN

eiϕ(x,y,θ)a(x, y, θ) dθ, x, y ∈ R
d.

They will later be used as kernels of FIOs.
We make the following assumptions on the phase function ϕ. It is a real-valued

quadratic form on R
2d+N ,

(3.2) ϕ(x, y, θ) = 〈(x, y, θ),Φ(x, y, θ)〉, x, y ∈ R
d, θ ∈ R

N ,

where Φ ∈ M(2d+N)×(2d+N)(R) is symmetric. We decompose Φ into blocks as

(3.3) Φ =
1

2

(
F L
Lt Q

)

where F ∈ M2d×2d(R), L ∈ M2d×N (R) and Q ∈ MN×N (R), and where F and Q are
symmetric. Thus

ϕ(x, y, θ) =
1

2
〈(x, y), F (x, y)〉 + 〈Lθ, (x, y)〉+

1

2
〈θ,Qθ〉, (x, y, θ) ∈ R

2d+N .

We assume the following non-degeneracy condition:

(3.4) The submatrix

(
L
Q

)
∈ M(2d+N)×N (R) is injective.

As example is given by the pseudodifferential operator phase function ϕ(x, y, ξ) =
〈x− y, ξ〉 where F = 0, Q = 0 and

L =

(
Id
−Id

)
∈ M2d×d(R).

In (3.1) we assume N > 0. If N = 0 then the matrices L and Q do not exist and we
interpret the integral (3.1) as

(3.5) Kϕ,a(x, y) = eiϕ(x,y)a(x, y) x, y ∈ R
d.

Denote X = (x, y) ∈ R
2d. The critical set defined by a phase function ϕ is the linear

subspace

Cϕ = {(X, θ) ∈ R
2d+N : ϕ′

θ(X, θ) = 0} ⊆ R
2d+N
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and the associated Lagrangian subspace is

Λϕ = {(X,ϕ′
X (X, θ)) ∈ T ∗

R
2d : ϕ′

θ(X, θ) = 0} ⊆ T ∗
R
2d.

Owing to the properties of ϕ we have dimCϕ = dimΛϕ = 2d.
The amplitude a in (3.1) is assumed to be of Shubin type [24]. Let Ω ⊆ R

2d+N be
open and let 0 6 ρ 6 1. The space of Shubin amplitudes of order m ∈ R is denoted
Γmρ (Ω), and a ∈ Γmρ (Ω) means that a ∈ C∞(Ω) and

(3.6) |∂αX∂
β
θ a(X, θ)| . 〈(X, θ)〉m−ρ|α+β|, (α, β) ∈ N

2d+N , (X, θ) ∈ Ω.

We denote Γm(Ω) = Γm1 (Ω) and Γ∞
ρ (Ω) =

⋃
m∈R

Γmρ (Ω).

We will mostly assume a ∈ Γmρ (R
2d+N ). Occasionally we will discuss a larger space

of amplitudes, introduced by Helffer [14], that is adapted to a given phase function.
Consider for ε > 0 the open conic set

(3.7) Vϕ,ε = {(X, θ) ∈ R
2d+N : |ϕ′

θ(X, θ)| < ε|(X, θ)|} ⊆ R
2d+N

which contains the critical set Cϕ. We denote

(3.8) Γmϕ,ρ,ε(R
2d+N ) = Γmρ (Vϕ,ε) ∩ Γ∞

0 (R2d+N ),

see [14, Section 2.2]. In this definition it is required that the amplitudes behave like Γmρ
only in a conic neighborhood of the critical set, outside of which a cruder polynomial
estimate of the derivatives is sufficient. The space Γmϕ,ρ,ε(R

2d+N ) includes symbols of
pseudodifferential operators (cf. Remark 4.5).

Remark 3.1. The restriction to quadratic phase functions is crucial in order to obtain
estimates in the phase space for the FBI transform of the kernels. However, the condi-
tions (3.2), (3.3), (3.4) combined with Shubin amplitudes are less restrictive than one
might think. In fact we can allow a phase function of the form ϕr = ϕ + r where ϕ
satisfies the assumptions above and r ∈ Γ0

ρ(R
2d+N ). Then eir ∈ Γ0

ρ(R
2d+N ), and hence

the factor eir can be absorbed into the amplitude. This means that the phase function
only has to be a non-degenerate quadratic form modulo an element in Γ0

ρ(R
2d+N ).

We note that the conditions (3.2), (3.3), (3.4) on the phase function are neither
weaker nor stronger than the conditions in [1], and the same observation holds for the
conditions in [14]. In [1,14] the authors deal with phase functions that are more general
than quadratic forms, but their conditions of non-degeneracy are stronger than ours.
On the other hand, we shall later restrict to phase functions that are associated to the
twisted graph Lagrangian of a symplectic matrix. Under this additional condition our
phase functions become a subset of the ones considered in [1, 14], cf. Remark 4.8.

If a ∈ Γmρ (R
2d+N ) with m < −N the integral (3.1) converges absolutely and defines

a polynomially bounded function. Due to the properties of ϕ it is possible to give
meaning to (3.1) for any m ∈ R. To wit, by the regularization procedure described
in [18, Section 5] and [21, Section 3], one extends (3.1) to m ∈ R obtaining a kernel
Kϕ,a ∈ S ′(R2d).
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More precisely, first let a ∈ Γmρ (R
2d+N ) with m < −N and let f ∈ S (R2d). For

1 6 j 6 N we have

(Kϕ,a, f) =

∫

R2d+N

eiϕ(X,θ)a(X, θ) f(X) dθ dX

=

∫

R2d+N

eiϕ(X,θ)Pj

(
a(X, θ) f(X)

)
dθ dX

where Pj is a first order differential operator of the form

Pjg = (1 + 〈uj ,∇X,θ〉+ 〈bj ,X〉)

(
g

1− iθj

)
, uj ∈ R

2d+N , bj ∈ R
2d,

acting on g ∈ C∞(R2d+N ). Iterating this k times and then over 1 6 j 6 N produces

(3.9) (Kϕ,a, f) =

∫

R2d+N

eiϕ(X,θ)P
(
a(X, θ) f(X)

)
dθ dX

where

(3.10) P = P k1 P
k
2 · · ·P kN .

For m ∈ R and a ∈ Γmρ (R
2d+N ) the integral (3.9) converges and defines a distribution

in S ′(R2d) provided k > |m| + 2, since the factors in the denominator 1 − iθj make

the integral with respect to θ convergent. Thus Kϕ,a ∈ S ′(R2d) is well defined for

a ∈ Γmρ (R
2d+N ) where m ∈ R is arbitrary, and the extension is unique. Equivalently we

may define Kϕ,a ∈ S ′(R2d) for a ∈ Γmρ (R
2d+N ) as

(Kϕ,a, f) = lim
ε→0+

∫

R2d+N

χε(θ) e
iϕ(X,θ)a(X, θ) f(X) dθ dX, f ∈ S (R2d),

where χε(θ) = χ(εθ), χ ∈ S (RN ), ε > 0 and χ(θ) = 1 when |θ| 6 1. The latter
regularization can be written as

Kϕ,a(X) = lim
ε→0+

∫

RN

χε(θ) e
iϕ(X,θ)a(X, θ) dθ, X ∈ R

2d.

In the following we show that the oscillatory integral (3.1) with a ∈ Γmρ (R
2d+N ) may

be rewritten with a possibly new amplitude b ∈ Γmρ (R
2d+n) for some n ∈ N such that

0 6 n 6 N and a possibly new phase function which lacks the term Q, cf. (3.2) and
(3.3).

Proposition 3.2. Suppose N > 1, a ∈ Γmρ (R
2d+N ) and let ϕ be a quadratic phase

function defined by a symmetric matrix Φ ∈ M(2d+N)×(2d+N)(R) denoted as in (3.3) and

satisfying (3.4). Denote the corresponding Lagrangian by Λϕ ⊆ T ∗
R
2d.

Then there exists n ∈ N such that 0 6 n 6 N , and (3.1) can be written as the
oscillatory integral

Kϕ0,b(X) =

∫

Rn

eiϕ0(X,θ)b(X, θ) dθ, X ∈ R
2d,

where b ∈ Γmρ (R
2d+n), and where the new phase function ϕ0 is defined by a symmetric

matrix Φ0 ∈ M(2d+n)×(2d+n)(R) denoted as in (3.3) with Q = 0 and satisfying (3.4).
Furthermore ϕ0 parametrizes the same Lagrangian as ϕ, that is Λϕ0

= Λϕ.
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Proof. By an orthogonal change of variables in the integral (3.1) we may assume that
Q = diag(q1, · · · , qN ) is diagonal, modifying the amplitude a ∈ Γmρ (R

2d+N ) without
altering Λϕ.

In the following we suppose that N > 1, but the argument holds also for N = 1,
with natural modifications (vectors in R

N−1, matrices in M2d×(N−1)(R) and functions

on R
N−1 are interpreted as non-existing).

Denote L = [L0 ℓ] where L0 ∈ M2d×(N−1)(R), ℓ ∈ M2d×1(R) andQ0 = diag(q1, · · · , qN−1).

Suppose qN = ∂2θNϕ 6= 0. Denoting θ = (θ′, θN ) ∈ R
N with θ′ ∈ R

N−1 and θN ∈ R,
completion of the square gives

ϕ(X, θ) =
1

2
qN(θN + q−1

N 〈ℓ,X〉)2 + ϕ0(X, θ
′)

where

ϕ0(X, θ
′) =

1

2
〈X,F0X〉+ 〈L0θ

′,X〉 +
1

2
〈θ′, Q0θ

′〉

and

F0 = F − q−1
N ℓℓt.

The condition (3.4) is preserved for the matrices that define ϕ0.
Denote the Lagrangian corresponding to ϕ0 by Λϕ0

. Suppose (X, θ) ∈ R
2d+N and

(X,FX+Lθ) ∈ Λϕ, that is L
tX+Qθ = 0. Then Lt0X+Q0θ

′ = 0 and 〈ℓ,X〉+qNθN = 0
which gives F0X + L0θ

′ = FX + Lθ. Thus Λϕ ⊆ Λϕ0
and hence Λϕ = Λϕ0

since both
are subspaces of dimension 2d.

Set c = qN/2 and u = −q−1
N ℓ. Let χ ∈ S (RN−1) satisfy χ(θ′) = 1 when |θ′| 6 1, and

let ψ ∈ S (R) satisfy ψ(θN ) = 1 when |θN | 6 1. We have for f ∈ S (R2d)

(3.11)

(Kϕ,a, f) = lim
ε→0+

∫

R2d+N

(χ⊗ ψ)ε(θ) e
iϕ(X,θ)a(X, θ) f(X) dθ dX

= lim
ε→0+

∫

R2d+N−1

χε(θ
′) eiϕ0(X,θ′)bε(X, θ

′) f(X) dθ′ dX

= lim
ε→0+

∫

R2d+N−1

eiϕ0(X,θ′) P0

(
χε(θ

′) bε(X, θ
′) f(X)

)
dθ′ dX

where

(3.12) bε(X, θ
′) :=

∫

R

ψε(θN ) e
ic(θN−〈u,X〉)2 a(X, θ) dθN

=

∫

R

ψε(θN + 〈u,X〉) eic θ
2
N a(X, θ′, θN + 〈u,X〉) dθN

and where P0 is an operator that corresponds to ϕ0 as P corresponds to ϕ in (3.9) and
(3.10) with k ∈ N sufficiently large. For fixed ε > 0 the function bε ∈ C∞(R2d+N−1)
satisfies the estimates∣∣∣∂αX∂βθ′bε(X, θ

′)
∣∣∣ . 〈(X, θ′)〉m−ρ|β|, (α, β) ∈ N

2d+N−1, (X, θ′) ∈ R
2d+N−1,

which are slightly different from the Shubin estimates (3.6). However, they suffice to
make sense of the oscillatory integral (3.11).
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Our plan is to show first

(3.13) b(X, θ′) = lim
ε→0+

bε(X, θ
′) ∈ Γmρ (R

2d+N−1),

and then

(3.14) lim
ε→0+

P0(χε(θ
′) bε(X, θ

′) f(X)) = P0(b(X, θ
′) f(X)), (X, θ′) ∈ R

2d+N−1,

and finally

(3.15) |P0(χε(θ
′) bε(X, θ

′) f(X))| . 〈(X, θ′)〉−2d−N+1, (X, θ′) ∈ R
2d+N−1,

uniformly over 0 < ε 6 1. The limit (3.14) inserted into (3.11), combined with the
estimate (3.15) and dominated convergence then give

(Kϕ,a, f) =

∫

R2d+N−1

eiϕ0(X,θ′) P0

(
b(X, θ′) f(X)

)
dθ′ dX

= lim
ε→0+

∫

R2d+N−1

χε(θ
′) eiϕ0(X,θ′) b(X, θ′) f(X) dθ′ dX.

By induction this proves the theorem.
It remains to show (3.13)–(3.15). We start with (3.13). Let R > 0 and set

b1,ε(X, θ
′) =

∫

R

ψ(θN/R)ψε(θN + 〈u,X〉) eic θ
2
Na(X, θ′, θN + 〈u,X〉) dθN ,

b2,ε(X, θ
′) =

∫

R

(1− ψ(θN/R))ψε(θN + 〈u,X〉) eic θ
2
Na(X, θ′, θN + 〈u,X〉) dθN

so that bε = b1,ε + b2,ε. It is clear that

(3.16)
b1(X, θ

′) := lim
ε→0+

b1,ε(X, θ
′) =

∫

R

ψ(θN/R)e
ic θ2

N a(X, θ′, θN + 〈u,X〉) dθN

∈ Γmρ (R
2d+N−1)

and we also have the uniform estimates over 0 < ε 6 1

(3.17) |∂αX∂
β
θ′b1,ε(X, θ

′)| . 〈(X, θ′)〉|m|, (X, θ′) ∈ R
2d+N−1, (α, β) ∈ N

2d+N−1.

To estimate b2,ε we first regularize the integral. We have (−∂θN )
jeic θ

2
N = pj(θN )e

ic θ2
N

where pj is a polynomial of degree j ∈ N. Integration by parts thus gives

b2,ε(X, θ
′) =

∫

R

eic θ
2
N∂jθN

(
p−1
j (θN )(1− ψ(θN/R))ψε(θN + 〈u,X〉) a(X, θ′, θN + 〈u,X〉)

)
dθN .

If we first pick j sufficiently large and then R > 0 sufficiently large (to avoid the zeroes
of pj), the integral converges and we obtain

(3.18)

b2(X, θ
′) := lim

ε→0+
b2,ε(X, θ

′)

=

∫

R

eic θ
2
N∂jθN

(
p−1
j (θN )(1 − ψ(θN/R)) a(X, θ

′, θN + 〈u,X〉)
)
dθN

∈ Γmρ (R
2d+N−1)
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as well as the uniform estimates over 0 < ε 6 1

(3.19) |∂αX∂
β
θ′b2,ε(X, θ

′)| . 〈(X, θ′)〉|m|, (X, θ′) ∈ R
2d+N−1, (α, β) ∈ N

2d+N−1.

Combining (3.16) and (3.18) proves (3.13), and we obtain from (3.17), (3.19) the
uniform estimates over 0 < ε 6 1

(3.20) |∂αX∂
β
θ′bε(X, θ

′)| . 〈(X, θ′)〉|m|, (X, θ′) ∈ R
2d+N−1, (α, β) ∈ N

2d+N−1.

Next we show (3.14). Let (X, θ′) ∈ R
2d+N−1 be fixed. First we look at the operator

Pj defined by its action on f ∈ C∞(R2d+N−1) by

Pjf = (1 + 〈uj ,∇X〉+ 〈vj ,X〉 + 〈wj ,∇θ′〉)

(
f

1− iθj

)

for 1 6 j 6 N − 1, where uj, vj ∈ R
2d and wj ∈ R

N−1. We have

(3.21)

Pj

(
χε(θ

′) bε(X, θ
′) f(X)

)

= χε(θ
′)Pj

(
bε(X, θ

′) f(X)
)
+ 〈wj ,∇θ′〉

(
χε(θ

′)
) bε(X, θ′) f(X)

1− iθj
.

Note that 〈wj ,∇θ′〉 (χε(θ
′)) = O(ε). Since P0 = P k1 P

k
2 · · ·P kN−1 for some k ∈ N, it

suffices to show, taking into account (3.20),

lim
ε→0+

P0(bε(X, θ
′) f(X)) = P0(b(X, θ

′) f(X)), (X, θ′) ∈ R
2d+N−1.

The validity of this identity can be verified by means of the decomposition bε = b1,ε+b2,ε
above. The details are left to the reader. Thus (3.14) has been proved.

Finally we indicate how to show (3.15). Again we use the decomposition bε = b1,ε+b2,ε.

Combining this with (3.21) and P0 = P k1 P
k
2 · · ·P kN−1 for k ∈ N sufficiently large, one can

confirm the estimate (3.15). The details are again left to the reader. �

As a consequence of the proposition we may assume

(3.22) Φ =
1

2

(
F L
Lt 0

)

where F ∈ M2d×2d(R) is symmetric and L ∈ M2d×N (R) is injective. The corresponding
Lagrangian Λ ⊆ T ∗

R
2d is

(3.23) Λ = {(X,FX + Lθ) : (X, θ) ∈ R
2d+N , LtX = 0}.

Conversely it can be shown (cf. [21]) that any Lagrangian Λ ⊆ T ∗
R
2d can be parametrized

in this way, for a symmetric matrix F ∈ M2d×2d(R) and an injective matrix L ∈
M2d×N (R). The matrix L is uniquely determined modulo invertible right factors. The
matrix F can be assumed to satisfy RanF ⊥ RanL [21], but F is not uniquely deter-
mined by Λ. What is unique is FY = πY FπY where Y = KerLt, but F − FY can be
arbitrary.

If ϕ1 and ϕ2 both parametrize a given Lagrangian Λ ⊆ T ∗
R
2d as in (3.23), and

a ∈ Γmρ (R
2d+N ), then Kϕ1,a = Kϕ2,a is not guaranteed. In fact, if ϕj is defined by
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matrices Fj ∈ M2d×2d(R), Lj ∈ M2d×N (R) and Qj ∈ MN×N (R) for j = 1, 2, then by
Proposition 3.2

(3.24) Kϕj ,a(X) =

∫

Rn

e
i
2
〈X,FjX〉+i〈Lθ,X〉aj(X, θ) dθ

where L ∈ M2d×n(R) is injective and n 6 N , since after reduction to Qj = 0, j = 1, 2, we
have KerLt1 = KerLt2. Here a1 ∈ Γmρ (R

2d+n) is not guaranteed to equal a2 ∈ Γmρ (R
2d+n),

and likewise F1 6= F2 in general, whereas πY F1πY = πY F2πY .
We are interested in phase functions that correspond to twisted graph Lagrangians

in T ∗
R
2d with respect to a symplectic matrix χ ∈ Sp(d,R). The graph in T ∗

R
d × T ∗

R
d

with respect to χ ∈ Sp(d,R) is

(3.25) Λχ = {(x, ξ; y, η) ∈ T ∗
R
d × T ∗

R
d : (x, ξ) = χ(y, η)} ⊆ T ∗

R
d × T ∗

R
d,

and it is a Lagrangian if we equip T ∗
R
d × T ∗

R
d with the symplectic form

σ1(x, y, ξ, η) = σ(x, ξ) − σ(y, η), (x, y), (ξ, η) ∈ T ∗
R
d × T ∗

R
d.

The symplectic vector space (T ∗
R
d × T ∗

R
d, σ1) is isomorphic to T ∗

R
2d equipped with

the canonical symplectic form (2.5). The isomorphism is given by the twist operator

(x, ξ, y, η)′ = (x, ξ, y,−η), x, y, ξ, η ∈ R
d,

followed by transposition of the second and third variables. The twisted graph La-
grangian with respect to χ ∈ Sp(d,R) is

(3.26) Λ′
χ = {(x, y, ξ,−η) ∈ T ∗

R
2d : (x, ξ) = χ(y, η)} ⊆ T ∗

R
2d.

Remark 3.3. Note that the notations Λχ ⊆ T ∗
R
d × T ∗

R
d in (3.25) and Λ′

χ ⊆ T ∗
R
2d in

(3.26) understand different ambient symplectic spaces.

Definition 3.4. If m ∈ R and χ ∈ Sp(d,R) we denote by Km
ρ (χ) ⊆ S ′(R2d) the set

of kernels Kϕ,a defined as in (3.1) where a ∈ Γmρ (R
2d+N ) for N > 0, and where the

phase function ϕ parametrizes the twisted graph Lagrangian Λ′
χ ⊆ T ∗

R
2d. We write

Km
1 (χ) = Km(χ).

For pseudodifferential operators the Lagrangian is the conormal bundle of the diago-
nal, that is Λ = N(∆) = ∆×∆⊥ ⊆ T ∗

R
2d, with

(3.27) ∆ = {(x, x) : x ∈ R
d} ⊆ R

2d, ∆⊥ = {(ξ,−ξ) : ξ ∈ R
d} ⊆ R

2d.

This means N(∆) = Λ′
I where I ∈ Sp(d,R) is the identity matrix.

4. Fourier integral operators with quadratic phase functions

In this section we treat FIOs defined by kernels that are oscillatory integrals as in
Definition 3.4 and compare our conditions with [1] and [14].

Definition 4.1. Let χ ∈ Sp(d,R), N > 0 and a ∈ Γmρ (R
2d+N ). The operator with

kernel Kϕ,a ∈ Km
ρ (χ) is denoted Kϕ,a and called FIO. The set of operators with kernels

in Km
ρ (χ) is denoted Im

ρ (χ), and Im
1 (χ) = Im(χ).
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Thus

(Kϕ,af, g) = (Kϕ,a, g ⊗ f), f, g ∈ S (Rd).

Since Kϕ,a ∈ S ′(R2d) the FIO Kϕ,a : S (Rd) → S ′(Rd) is continuous.
The following result appears implicitly in [14]. We prefer to include it in order to give

a self-contained account.

Lemma 4.2. Let N > 0 and let ϕ be a quadratic form defined by a symmetric Φ ∈
M(2d+N)×(2d+N)(R) as in (3.3) such that (3.4) is satisfied. Define Vϕ,ε by (3.7). If

a ∈ Γmρ (R
2d+N ) satisfies

supp(a) ∩ Vϕ,ε is compact in R
2d+N

for some ε > 0 then Kϕ,a ∈ S (R2d).

Proof. The case N = 0 is trivial so we may assume N > 1. If supp(a) is compact
then Kϕ,a ∈ S (R2d). Using an appropriate cutoff function we may therefore assume
supp(a) ∩ (Vϕ,ε ∪ Br) = ∅ for some r > 0. By Proposition 3.2 we may assume that
ϕ′
θ(x, y, θ) is a linear function that does not depend on θ ∈ R

N .
On the support of a we may write

eiϕ(x,y,θ) = −i|ϕ′
θ|
−2〈ϕ′

θ,∇θe
iϕ(x,y,θ)〉.

First we introduce the operator

Tθg(θ) = i〈∇θ, ϕ
′
θ|ϕ

′
θ|
−2g(θ)〉 = i|ϕ′

θ|
−2〈ϕ′

θ,∇g〉

that acts on g ∈ C∞(RN ) provided ϕ′
θ 6= 0, and integrate by parts. This yields for

f ∈ S (R2d) and n ∈ N

(Kϕ,a, f) = lim
δ→0+

∫

R2d+N

χδ(θ) e
iϕ(x,y,θ)T nθ a(x, y, θ) f(x, y) dθ dxdy

where χ ∈ S (RN ) and χ(θ) = 1 when |θ| 6 1.
The assumption implies that we have in the support of a

(4.1) |ϕ′
θ(x, y, θ)| > ε|(x, y, θ)|.

From the observation that ϕ′
θ is a linear function it follows that for n ∈ N sufficiently

large, we have

Kϕ,a(x, y) =

∫

RN

eiϕ(x,y,θ)T nθ a(x, y, θ) dθ.

The integral is absolutely convergent thanks to (4.1) if n ∈ N is sufficiently large. The
same facts imply that the integral belongs to S (R2d). �

We say that a continuous linear operator K : S ′(Rd) → S ′(Rd) is regularizing if it
is continuous

K : S
′(Rd) → S (Rd)

which is equivalent to the property of its kernel K ∈ S (R2d). Hence from Lemma 4.2
we obtain the following result.

Corollary 4.3. Under the assumptions of Lemma 4.2 the operator Kϕ,a is regularizing.
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The next result shows that any regularizing operator can be considered an FIO in
∩m∈RIm(χ) for χ ∈ Sp(d,R) arbitrary.

Lemma 4.4. Let χ ∈ Sp(d,R), N > 0, and suppose ϕ is a quadratic form, defined
by a symmetric Φ ∈ M(2d+N)×(2d+N)(R) as in (3.3) such that (3.4) is satisfied, that

parametrizes the twisted Lagrangian Λ′
χ ⊆ T ∗

R
2d. If K ∈ S (R2d) then there exists

a ∈ S (R2d+N ) such that K = Kϕ,a.

Proof. Again we may assume N > 1. Let g ∈ S (RN ) satisfy
∫
g(θ) dθ = 1. Then

a(X, θ) = K(X)g(θ)e−iϕ(X,θ) ∈ S (R2d+N )

and

Kϕ,a(X) =

∫

RN

eiϕ(X,θ)a(X, θ) dθ =

∫

RN

K(X)g(θ) dθ = K(X).

�

Remark 4.5. The space of amplitudes Γmρ (R
2d+N ) may seem somewhat restrictive (cf. [14,

24]). For instance the symbol a(x, θ) ∈ Γmρ (R
2d) of a Kohn–Nirenberg pseudodifferential

operator a(x,D) is not an amplitude of three variables in Γmρ (R
3d) since the derivatives

of a(x, θ) do not decay with respect to y. However, by picking a conical cutoff function
ψ ∈ C∞(R3d) that is one around the cone Vϕ,ε (except on a compact set) defined by
(3.7) for ε > 0 sufficiently small, it follows from the proof of [14, Proposition 2.2.4] that
aψ ∈ Γmρ (R

3d). The operator with amplitude a(1 − ψ) is regularizing by Corollary 4.3,

and by Lemma 4.4 its amplitude can be absorbed into the amplitude aψ ∈ Γmρ (R
3d).

Thus a(x,D) ∈ Im
ρ (I).

Helffer’s larger space of amplitudes Γmϕ,ρ,ε(R
2d+N ) contains symbols from Γmρ (R

2d)
without modification. On the other hand, by [14, Lemma 2.2.2] every amplitude a ∈
Γmϕ,ρ,ε(R

2d+N ) can be decomposed as a = a1+a2 where a1 ∈ Γmρ (R
2d+N ) and a2 gives rise

to a regularizing operator, and also the calculus developed in [14] is constructed mod-
ulo regularizing operators. Hence, either choice of amplitudes yields the same calculus
modulo regularizing operators. We prefer to work with the phase-independent choice of
Γmρ (R

2d+N ), eliminating the necessity of an additional cut-off argument in certain proofs.

In the following we study properties of the FIOs Kϕ,a with kernel Kϕ,a ∈ Km
ρ (χ) for

χ ∈ Sp(d,R). In view of Remark 4.5 we may replace the assumption a ∈ Γmρ (R
2d+N )

with a ∈ Γmϕ,ρ,ε(R
2d+N ) in all results which hold modulo regularizers.

First we observe that for trivial amplitude a FIO is a metaplectic operator times a
nonzero constant, see [18, Section 5] for the proof.

Proposition 4.6. If χ ∈ Sp(d,R) and Kϕ,1 ∈ I 0(χ) then

Kϕ,1 = Cϕµ(χ)

where Cϕ ∈ C \ 0 depends on the phase function which parametrizes the Lagrangian Λ′
χ.

Next we study the case of non-trivial amplitudes and a particular feature of the matrix
χ ∈ Sp(d,R).
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We recall that a symplectic matrix has the block form

(4.2) χ =

(
A B
C D

)
∈ Sp(d,R)

where A,B,C,D ∈ Md×d(R) satisfy

AtC = CtA, BtD = DtB, ABt = BAt, CDt = DCt,(4.3)

AtD − CtB = I, ADt −BCt = I,(4.4)

cf. [11, Proposition 4.1].
A matrix χ ∈ Sp(d,R) is called free [12] when B ∈ GL(d,R). In this case the matrix

(
A B
I 0

)
∈ M2d×2d(R)

is invertible with inverse (
0 I

B−1 −B−1A

)
∈ GL(2d,R).

This gives

Λ′
χ =

{
(Ay +Bη, y,Cy +Dη,−η) ∈ T ∗

R
2d : (y, η) ∈ R

2d
}

=
{
(X,FX) ∈ T ∗

R
2d : X ∈ R

2d
}

(4.5)

with

(4.6) F =

(
C D
0 −I

)(
0 I

B−1 −B−1A

)
=

(
DB−1 −B−t

−B−1 B−1A

)
= F t

thanks to the identities (4.3) and (4.4).
The upshot of this is as follows. The matrix χ ∈ Sp(d,R) is free exactly when the corre-

sponding twisted graph Lagrangian has the form Λ′
χ =

{
(X,FX) ∈ T ∗

R
2d : X ∈ R

2d
}
.

By (4.5) we may choose the canonical phase function ϕ(X) = 1
2〈X,FX〉 to parametrize

Λ′
χ, which is reduced in the sense that N = 0. The kernel (3.1) is then interpreted as

(3.5), that is

(4.7) Kϕ,a(X) = e
i
2
〈X,FX〉a(X), X ∈ R

2d,

where a ∈ Γmρ (R
2d). Any kernel in Km

ρ (χ) can be reduced by means of Proposition 3.2
to one with kernel of the form (4.7). We note that the matrix F ∈ M2d×2d(R) is uniquely
defined by (4.6) in terms of the blocks of χ.

Next we prove a result which allows us to compare our conditions on the phase function
with the ones assumed in [1, 14].

Lemma 4.7. Let χ ∈ Sp(d,R) and suppose the twisted graph Lagrangian (3.26) is
parametrized by the quadratic form defined by (3.2) and (3.3) such that (3.4) holds.
Denote

(4.8) F =

(
E G
Gt H

)
, L =

(
P
R

)
,
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with E,G,H ∈ Md×d(R), E, H symmetric, and P,R ∈ Md×N (R). Then

(4.9)




Gt H R
0 I 0
P t Rt Q


 ,




I 0 0
E G P
P t Rt Q


 ∈ GL(2d+N,R)

where the matrices are interpreted as having cancelled third block row and third block
column if N = 0.

Proof. First we assume N > 1. By permutation of rows and columns in (4.9), and
expansion with respect to the identity matrix it can be seen that the matrices have
equal determinant. It suffices therefore to show that the left matrix in (4.9) is invertible.
Suppose

(x, y, θ) ∈ Ker




Gt H R
0 I 0
P t Rt Q


 ,

that is y = 0 and {
Gtx+Rθ = 0
P tx+Qθ = 0

.

Since ϕ′
θ(x, 0, θ) = P tx+Qθ = 0 we have

(x, ϕ′
x(x, 0, θ), 0,−ϕ

′
y(x, 0, θ)) ∈ Λχ,

that is (x, ϕ′
x(x, 0, θ)) = χ(0,−ϕ′

y(x, 0, θ)).
With the notation (4.2) we may thus write with the stipulated matrix notation

{
x = −B(Gtx+Rθ) = 0
Ex+ Pθ = −D(Gtx+Rθ) = 0

.

Thus x = 0, Pθ = 0, Rθ = 0 and Qθ = 0. By (3.4) θ = 0, which proves



Gt H R
0 I 0
P t Rt Q


 ∈ GL(2d+N,R).

Finally we discuss the case when N = 0 which means that χ ∈ Sp(d,R) is free. We
have to show (

Gt H
0 I

)
,

(
I 0
E G

)
∈ GL(2d,R).

This follows from Gt, G ∈ GL(d,R) which is a consequence of (4.6). �

Remark 4.8. Lemma 4.7 implies that the non-degeneracy conditions on the phase func-
tions assumed in [14] are satisfied. Indeed if χ ∈ Sp(d,R) is not free then any phase
function ϕ parametrizing Λ′

χ satisfies

(4.10)
|(x, y, θ)| . |(ϕ′

y , y, ϕ
′
θ)|, (x, y, θ) ∈ R

2d+N

|(x, y, θ)| . |(x, ϕ′
x, ϕ

′
θ)|, (x, y, θ) ∈ R

2d+N .

If χ ∈ Sp(d,R) is free then N = 0 may be assumed, and

(4.11)
|(x, y)| . |(ϕ′

y, y)|, (x, y) ∈ R
2d

|(x, y)| . |(x, ϕ′
x)|, (x, y) ∈ R

2d.
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Also the stronger condition
∣∣∣∣∣

(
Φ

′′

x,y Φ
′′

x,θ

Φ
′′

θ,y Φ
′′

θ,θ

)∣∣∣∣∣ > δ0 > 0

assumed in [1] reduces in our case to the invertibility of the matrix
(
G P
Rt Q

)

which is granted by Lemma 4.7.

From Remark 4.8 and [14, Proposition 2.1.1] we obtain the following consequence.

Corollary 4.9. If χ ∈ Sp(d,R) and K ∈ Im
ρ (χ) then K is continuous on S (Rd) and

extends uniquely to be continuous on S ′(Rd).

Therefore FIOs may be composed as continuous operators on S (Rd). It turns out
that the composition is again an FIO associated to the composition of the involved
symplectic matrices. The following result generalizes Hörmander’s composition theorem
[18, Proposition 5.9], restricted to real-valued phase functions, to the case of non-trivial
amplitudes.

Proposition 4.10. Let χj ∈ Sp(d,R) and suppose Kj ∈ I
mj
ρ (χj), for j = 1, 2. Then

K1K2 ∈ Im1+m2
ρ (χ1χ2).

Proof. The proof is inspired by that of [18, Proposition 5.9] and that of [14, Proposition
2.2.3].

Corollary 4.9 implies that the composition K1K2 : S (Rd) → S (Rd) is a well defined
continuous operator. First we assume that N1, N2 > 1, that is, none of χ1, χ2 ∈ Sp(d,R)
is a free symplectic matrix.

Let ϕj be a phase function that parametrizes the twisted graph Lagrangian Λ′
χj

for

j = 1, 2, respectively. By Proposition 3.2 we may assume that ϕj is a quadratic form
defined as in (3.2) and (3.3) with Fj ∈ M2d×2d(R), Lj ∈ M2d×Nj

(R) and Qj = 0, for
j = 1, 2. Each Lagrangian Λ′

χj
has the form (3.23). The kernel of K1K2 is

(4.12) K(x, y) =

∫

Rd+N1+N2

ei(ϕ1(x,z,θ)+ϕ2(z,y,ξ))a1(x, z, θ) a2(z, y, ξ) dz dθ dξ,

x, y ∈ R
d, where we view (z, θ, ξ) ∈ R

d+N1+N2 as the covariable. First we show that
(4.12) is well defined as an oscillatory integral.

The amplitude is

b(x, y, z, θ, ξ) = a1(x, z, θ) a2(z, y, ξ)

which we at first consider an element in Γ
|m1|+|m2|
0 (R3d+N1+N2). The phase function is

ϕ(x, y, z, θ, ξ) = ϕ1(x, z, θ) + ϕ2(z, y, ξ)

so the corresponding Lagrangian is

Λ = {(x, y, ϕ′
1,x(x, z, θ), ϕ

′
2,y(z, y, ξ)) ∈ T

∗
R
2d :

ϕ′
1,y(x, z, θ) + ϕ′

2,x(z, y, ξ) = ϕ′
1,θ(x, z, θ) = ϕ′

2,ξ(z, y, ξ) = 0}.
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Twisting the Lagrangian and suppressing variables give

Λ′ = {(x, ϕ′
1,x, y,−ϕ

′
2,y) ∈ T ∗

R
d × T ∗

R
d : ϕ′

1,y + ϕ′
2,x = ϕ′

1,θ = ϕ′
2,ξ = 0}.

Since (z, ϕ′
2,x, y,−ϕ

′
2,y) ∈ Λχ2

we have

χ2(y,−ϕ
′
2,y) = (z, ϕ′

2,x) = (z,−ϕ′
1,y)

which gives

χ1χ2(y,−ϕ
′
2,y) = (x, ϕ′

1,x)

since (x, ϕ′
1,x, z,−ϕ

′
1,y) ∈ Λχ1

. This means that Λ′ = Λχ1χ2
, and hence ϕ parametrizes

the twisted graph Lagrangian Λ = Λ′
χ1χ2

.
Next we verify condition (3.4) for the matrix that defines ϕ, denoted as in (3.2) and

(3.3) with F ∈ M2d×2d(R), L ∈ M2d×(d+N1+N2)(R) and Q ∈ M(d+N1+N2)×(d+N1+N2)(R).
We adopt the block matrix notation (4.8) for Fj and Lj , with index j = 1, 2.

We have

(4.13)

(
L
Q

)
=




G1 P1 0
Gt2 0 R2

H1 + E2 R1 P2

Rt1 0 0
P t2 0 0




∈ M(3d+N1+N2)×(d+N1+N2)(R).

By Lemma 4.7
(
G1 P1

Rt1 0

)
∈ GL(d+N1,R),

(
Gt2 R2

P t2 0

)
∈ GL(d+N2,R).

This implies the injectivity of the matrix (4.13), and it follows that (4.12) is a well
defined oscillatory integral, provided N1, N2 > 1.

If N1 +N2 = 1 then one of χ1 or χ2 is a free symplectic matrix, that is B ∈ GL(d,R)
in the block decomposition (4.2). The argument above goes through verbatim, except
that some block matrices of the matrix (4.13) are cancelled when one of the matrices Lj
is non-existent. If χ2 is free then

(
L
Q

)
=




G1 P1

Gt2 0
H1 + E2 R1

Rt1 0


 ∈ M(3d+N1)×(d+N1)(R)

which is injective by the arguments above, and similarly the corresponding matrix is
injective if χ1 is free. Thus (4.12) is a well defined oscillatory integral if N1 +N2 = 1.

Finally we assume N1 = N2 = 0, that is both χ1 and χ2 are free symplectic matrices.
In this case the matrix (4.13) shrinks to

(
L
Q

)
=




G1

Gt2
H1 + E2


 ∈ M3d×d(R)

which is injective since G1 = −B−t
1 ∈ GL(d,R) due to (4.6), where we use the notation

(4.2) for χ1 with corresponding block matrices A1, B1, C1,D1 ∈ Md×d(R). Thus (4.12)
is a well defined oscillatory integral also if N1 +N2 = 0.
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It remains to prove K1K2 = Kϕ,a+R where R is regularizing, and a ∈ Γm1+m2
ρ (R3d+N1+N2).

In fact, by Lemma 4.4 this would entail Kϕ,a+R = Kϕ,c ∈ Im1+m2
ρ (χ1χ2) for a modified

amplitude c ∈ Γm1+m2
ρ (χ1χ2).

Let ε > 0 be arbitrary. Calculating modulo a regularizing R we use Lemma 4.2 to

multiply the amplitude b ∈ Γ
|m1|+|m2|
0 (R3d+N1+N2) with a smooth conical cut-off function

ψ ∈ C∞(R3d+N1+N2) such that

a = bψ ∈ Γ
|m1|+|m2|
0 (R3d+N1+N2)

has support contained in

Vϕ,ε = {(x, y, z, θ, ξ) ∈ R
3d+N1+N2 : |ϕ′

z,θ,ξ(x, y, z, θ, ξ)| < ε|(x, y, z, θ, ξ)|}.

Following the proof of [14, Proposition 2.2.3], it can be seen that this implies a ∈
Γm1+m2
ρ (R3d+N1+N2) when ε > 0 is sufficiently small. This is shown by showing

〈(x, z, θ)〉 ≍ 〈(z, y, ξ)〉 ≍ 〈(x, y, z, θ, ξ)〉

when (x, y, z, θ, ξ) ∈ supp(a). �

The next result concerns the formal adjoint of an FIO.

Proposition 4.11. If χ ∈ Sp(d,R), N > 0, a ∈ Γmρ (R
2d+N ) and Kϕ,a ∈ Im

ρ (χ) then

K ∗
ϕ,a = Kψ,b ∈ Im

ρ (χ−1) where ψ(x, y, θ) = −ϕ(y, x, θ) and b(x, y, θ) = a(y, x, θ).

Proof. By definition the formal adjoint satisfies

(Kϕ,af, g) = (f,K ∗
ϕ,ag), f, g ∈ S (Rd).

The left hand side is the oscillatory integral
∫

R2d+N

eiϕ(x,y,θ)a(x, y, θ) f(y) g(x) dθ dxdy

from which it follows that K ∗
ϕ,a has kernel

K(x, y) =

∫

RN

eiψ(x,y,θ)b(x, y, θ) dθ.

It remains to show that the phase function ψ(x, y, θ) = −ϕ(y, x, θ) parametrizes Λ′
χ−1 .

The Lagrangian corresponding to the phase function ψ is

Λψ = {(x, y, ψ′
x(x, y, θ), ψ

′
y(x, y, θ)) ∈ T ∗

R
2d : ψ′

θ(x, y, θ) = 0}

= {(x, y,−ϕ′
y(y, x, θ),−ϕ

′
x(y, x, θ)) ∈ T ∗

R
2d : ϕ′

θ(y, x, θ) = 0}

= {(x, y, ξ, η) ∈ T ∗
R
2d : (y, x,−η,−ξ) ∈ Λ′

χ}

= {(x, y, ξ, η) ∈ T ∗
R
2d : (x, ξ) = χ−1(y,−η)}

= Λ′
χ−1 .

�
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4.1. Factorization of FIOs. In this section we prove that the FIOs admit a factoriza-
tion into metaplectic and pseudodifferential operators, see [9, Theorem 1.3] for a related
result where modulation spaces are used for amplitudes.

We need a preparatory result that will be useful also later. Here z = (z1, z2) ∈ R
2d

where z1, z2 ∈ R
d.

Lemma 4.12. If u ∈ S ′(Rd), χ ∈ Sp(d,R) and g ∈ S (Rd)\0 then for all (x, ξ) ∈ T ∗
R
d

Tµ(χ)g(µ(χ)u)(x, ξ) = e
i
2(〈x,ξ〉−〈χ−1(x,ξ)1,χ−1(x,ξ)2〉)Tgu(χ

−1(x, ξ)).

Proof. If for fixed x, ξ ∈ R
d we define

ax,ξ(y, η) = e−
i
2
〈x,ξ〉+i(〈ξ,y〉−〈x,η〉), y, η ∈ R

d,

then awx,ξ(x,D) = TxMξ. Decomposing χ ∈ Sp(d,R) into blocks as in (4.2) the inverse is

(4.14) χ−1 =

(
Dt −Bt

−Ct At

)
∈ Sp(d,R),

cf. [11]. This gives

ax,ξ(χ(y, η)) = e−
i
2
〈x,ξ〉+i(〈ξ,Ay+Bη〉−〈x,Cy+Dη〉)

= e−
i
2
〈x,ξ〉+i(〈y,Atξ−Ctx〉−〈η,Dtx−Btξ〉)

= e−
i
2(〈x,ξ〉−〈χ−1(x,ξ)1,χ−1(x,ξ)2〉)aχ−1(x,ξ)(y, η).

Using the symplectic invariance (2.6) we obtain finally

Tµ(χ)g(µ(χ)u)(x, ξ) = (2π)−d/2(u, µ(χ)−1TxMξµ(χ)g)

= (2π)−d/2(u, (ax,ξ ◦ χ)
w(x,D)g)

= e
i
2(〈x,ξ〉−〈χ−1(x,ξ)1,χ−1(x,ξ)2〉)(2π)−d/2(u, awχ−1(x,ξ)(x,D)g)

= e
i
2(〈x,ξ〉−〈χ−1(x,ξ)1,χ−1(x,ξ)2〉)Tgu(χ

−1(x, ξ)).

�

Concerning factorization of FIOs we first treat the case χ = J , where

(4.15) J =

(
0 Id

−Id 0

)
∈ Sp(d,R)

which appears frequently in symplectic linear algebra [11]. Notice that J is free and

(4.16) µ(J ) = F .

Lemma 4.13. If K ∈ Im
ρ (J ) then there exists b ∈ Γmρ (R

2d) such that

K = bw(x,D)µ(J ) = µ(J )(b ◦ J )w(x,D).

Proof. Let K ∈ Km
ρ (J ). Since J is free, we may assume after a reduction of fibre

variables, that for some a ∈ Γmρ (R
2d)

K(x, y) = e−i〈x,y〉a(x, y), x, y ∈ R
d,
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using (4.6) and (4.7). Likewise the phase function ϕ(x, y) = 〈x, y〉, x, y ∈ R
d, parametrizes

the Lagrangian Λ′
−J . Thus K1(x, y) = ei〈x,y〉 ∈ K0(−J ). Denoting by K and K1 the

operators with kernels K and K1 respectively, the kernel of K K1 is therefore

K0(x, y) =

∫

Rd

ei〈x−y,z〉a(x,−z) dz.

After a change from left to Weyl quantization (cf. [24, Theorem 23.1]), this is the kernel

of a Weyl operator bw(x,D) with b ∈ Γmρ (R
2d). Since K

−1
1 = (2π)−d/2F by Proposition

4.6 we obtain

K = (2π)−d/2bw(x,D)F = (2π)−d/2bw(x,D)µ(J )

which is the first claimed factorization. The second claimed factorization follows from
the first and (2.6). �

Remark 4.14. Note that [24, Theorem 23.1] shows that the symbol space Γmρ (R
2d) is

independent of quantization (Weyl, Kohn–Nirenberg, or a parametrized set comprising
the two) provided ρ > 0. That is, if a(x,D) = bw(x,D) then a ∈ Γmρ (R

2d) if and only

if b ∈ Γmρ (R
2d). In the proof of Lemma 4.13 we use the same result also for ρ = 0. It

can be motivated as follows. (The argument also gives a short alternative proof of the
invariance for 0 < ρ 6 1.) Suppose a(x,D) = bw(x,D) and a ∈ Γmρ (R

2d). We must

show b ∈ Γmρ (R
2d). We have (cf. [16, Theorem 18.5.10]) b = F−1MFa where M is the

multiplication operator f(x, ξ) 7→ e−i〈x,ξ〉/2f(x, ξ). Thus M = µ(χ1) where

χ1 =

(
I2d 0
F I2d

)
∈ Sp(2d,R)

and

F = −
1

2

(
0 Id
Id 0

)
∈ M2d×2d(R).

From (4.16) it follows that b = ±µ(χ2)a with

χ2 = −Jχ1J =

(
I2d −F
0 I2d

)
∈ Sp(2d,R).

Lemma 4.12 gives with g ∈ S (R2d) \ 0

Tµ(χ2)gb(z, ζ) = ±e−
i
2
〈Fζ,ζ〉Tga(z + Fζ, ζ), z, ζ ∈ R

2d.

The claim b ∈ Γmρ (R
2d) is now a consequence of [6, Proposition 2.2].

As a consequence of Proposition 4.10 and Lemma 4.13 we get a representation theorem
for an FIO as the composition of a Weyl pseudodifferential operator and a metaplectic
operator.

Theorem 4.15. If χ ∈ Sp(d,R) and K ∈ Im
ρ (χ) then there exist b ∈ Γmρ (R

2d) such
that

K = bw(x,D)µ(χ) = µ(χ)(b ◦ χ)w(x,D).

Conversely, for any b ∈ Γmρ (R
2d) we have bw(x,D)µ(χ) ∈ Im

ρ (χ).
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Proof. Let Kϕ,1 ∈ I 0((−J χ)−1). By Proposition 4.10 and Lemma 4.13 we have, since
χ = J (−J χ),

K Kϕ,1 = K2 = bw(x,D)µ(J )

where K2 ∈ Im
ρ (J ) and b ∈ Γmρ (R

2d).

Proposition 4.6 gives K
−1
ϕ,1 = Cµ(−Jχ) where C ∈ C \ 0, and hence

K = Cbw(x,D)µ(J )µ(−Jχ) = ±Cbw(x,D)µ(χ).

This proves the first claimed factorization. The second claimed factorization is again an
immediate consequence of (2.6).

For the converse implication we observe that Proposition 4.6 implies µ(χ) = Kϕ,a ∈
I 0(χ) for an appropriate phase function ϕ and a constant amplitude a ≡ C ∈ C \
0. We also have bw(x,D) ∈ Im

ρ (I) (cf. Remark 4.5). Proposition 4.10 then gives
bw(x,D)µ(χ) ∈ Im

ρ (χ). �

The factorization in Theorem 4.15 has several consequences.
It means that we could define the FIOs as the operators of the form bw(x,D)µ(χ),

cf. [9]. Composing two FIOs gives using (2.6)

bw1 (x,D)µ(χ1)b
w
2 (x,D)µ(χ2) = bw1 (x,D)(b2 ◦ χ

−1
1 )w(x,D)µ(χ1)µ(χ2)

= ±(b1#(b2 ◦ χ
−1
1 ))w(x,D)µ(χ1χ2).

The FIOs can hence be identified with the semidirect product of Weyl quantized pseu-
dodifferential operators with the metaplectic group.

Since metaplectic operators and pseudodifferential operators are both continuous on
S (Rd), Theorem 4.15 also gives an alternative proof of continuity of operators in Im

ρ (χ)

on S (Rd) and on S ′(Rd). We can also deduce the continuity from the Shubin–Sobolev
space Qs(Rd) to Qs−m(Rd) for s ∈ R. These spaces were introduced by Shubin [24]
(cf. [13, 20]). The space Qs(Rd) is identical to the modulation space M2

s (R
d), that is

Qs(Rd) = {u ∈ S
′(Rd) : 〈·〉sTgu ∈ L2(R2d)}

where g ∈ S (Rd) \ 0 is fixed and arbitrary, with norm

‖u‖Qs = ‖〈·〉sTgu‖L2(R2d) .

Since metaplectic operators are homeomorphisms on Qs(Rd), cf. [12, Proposition
400], and since pseudodifferential operators of order m are continuous from Qs(Rd)
to Qs−m(Rd) [24, Theorem 25.2], we get the following result.

Proposition 4.16. Suppose χ ∈ Sp(d,R), and K ∈ Im
ρ (χ). Then K : Qs(Rd) →

Qs−m(Rd) is continuous for all s ∈ R.

Finally Theorem 4.15 and (2.6) imply the following result of Egorov type.

Corollary 4.17. If χ ∈ Sp(d,R), K ∈ Im
ρ (χ) and b ∈ Γnρ (R

2d) then there exist

c ∈ Γmρ (R
2d) such that

K
∗bw(x,D)K = (c#(b ◦ χ)#c)w(x,D) ∈ OPw Γ2m+n

ρ .
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5. Phase space characterization of FIOs

In this section we characterize the kernels of FIOs with estimates on their FBI trans-
form, generalizing our results for Shubin pseudodifferential operators [6].

First we show that Theorem 4.15 gives the following result as by-product.

Proposition 5.1. If χ ∈ Sp(d,R), Kϕ,a ∈ Km
ρ (χ) and g ∈ S (Rd) \ 0 then there exist

b ∈ Γmρ (R
2d) and h ∈ S (R2d) \ 0 such that

Tg⊗gKϕ,a(z, ζ) = e
i
2
(〈z2,ζ2〉+〈χ(z2,−ζ2)1,χ(z2,−ζ2)2〉)

× ThKb(z1, χ(z2,−ζ2)1, ζ1,−χ(z2,−ζ2)2),

(z, ζ) ∈ T ∗
R
2d,

where Kb is the kernel of bw(x,D) (cf. (2.2)).

Proof. By Theorem 4.15 we have for some b ∈ Γmρ (R
2d)

(5.1)

Tg⊗gKϕ,a(z, ζ) = (2π)−d(Kϕ,a, TzMζ(g ⊗ g))

= (2π)−d(Kϕ,a, Tz1Mζ1g ⊗ Tz2Mζ2g)

= (2π)−d(Kϕ,aTz2M−ζ2g, Tz1Mζ1g)

= (2π)−d(bw(x,D)µ(χ)Tz2M−ζ2g, Tz1Mζ1g)

= (2π)−d(Kb, Tz1Mζ1g ⊗ µ(χ)Tz2M−ζ2g).

Denoting gχ = µ(χ)g ∈ S (Rd) \ 0 we study

µ(χ)Tz2M−ζ2g = µ(χ)Tz2M−ζ2µ(χ
−1)gχ.

We have by the proof of Lemma 4.12

µ(χ)Tz2M−ζ2µ(χ
−1) = e

i
2
(〈z2,ζ2〉+〈χ(z2,−ζ2)1,χ(z2,−ζ2)2〉)Tχ(z2,−ζ2)1Mχ(z2,−ζ2)2 .

Inserted into (5.1) this gives finally

Tg⊗gKϕ,a(z, ζ)

= (2π)−de
i
2
(〈z2,ζ2〉+〈χ(z2,−ζ2)1,χ(z2,−ζ2)2〉)(Kb, Tz1Mζ1g ⊗ Tχ(z2,−ζ2)1Mχ(z2,−ζ2)2gχ)

= (2π)−de
i
2
(〈z2,ζ2〉+〈χ(z2,−ζ2)1,χ(z2,−ζ2)2〉)(Kb, T(z1,χ(z2,−ζ2)1)M(ζ1,−χ(z2,−ζ2)2)(g ⊗ gχ))

= e
i
2
(〈z2,ζ2〉+〈χ(z2,−ζ2)1,χ(z2,−ζ2)2〉)ThKb(z1, χ(z2,−ζ2)1, ζ1,−χ(z2,−ζ2)2)

with h = g ⊗ gχ. �

As a consequence we obtain

(5.2)
Tg⊗gKϕ,a(z, ζ) = e

i
2
(〈z,ζ〉+σ(χ(z2,−ζ2),(z1,ζ1)))

× T ∆
h Kb(z1, χ(z2,−ζ2)1, ζ1,−χ(z2,−ζ2)2)

where we use the notation of [6, Definition 3.2] for K ∈ S ′(R2d) and h ∈ S (R2d) \ 0

T ∆
h K(z, ζ) = e−

i
2
〈ζ1−ζ2,z1−z2〉ThK(z, ζ), (z, ζ) ∈ T ∗

R
2d,

and the symplectic form (2.5).
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Defining

T χ
g⊗gKϕ,a(z, ζ) = e−

i
2
(〈z,ζ〉+σ(χ(z2,−ζ2),(z1,ζ1)))Tg⊗gKϕ,a(z, ζ)

we have thus

T χ
g⊗gKϕ,a(z, ζ) = T ∆

h Kb(z1, χ(z2,−ζ2)1, ζ1,−χ(z2,−ζ2)2)

where h = g ⊗ gχ. When χ = I we recover T I
g⊗gKϕ,a(z, ζ) = T ∆

g⊗gKb(z, ζ).

Using the block matrix notation (4.2) we obtain for (y, η) ∈ T ∗
R
d

〈(χ(y, η), y,−η),∇(z1 ,ζ1,z2,ζ2)〉T
∆
h Kb ((z1, χ(z2,−ζ2)1, ζ1,−χ(z2,−ζ2)2))

= 〈χ(y, η),
(
(∇1 +∇2,∇3 −∇4)T

∆
h Kb

)
(z1, χ(z2,−ζ2)1, ζ1,−χ(z2,−ζ2)2)〉

where ∇j denotes the gradient with respect to the R
d variable indexed by j = 1, 2, 3, 4.

Combined with [6, Proposition 3.3] this gives the following characterization of the
kernels of FIOs (cf. [25]). Note that we recover [6, Proposition 3.3] when χ = I.

Theorem 5.2. Let K ∈ S ′(R2d) and g ∈ S (Rd) \ 0. Then K ∈ Km
ρ (χ) with χ ∈

Sp(d,R) if and only if the estimates

|L1 · · ·LkT
χ
g⊗gK(z, ζ)| . 〈(z1, ζ1) + χ(z2,−ζ2)〉

m−ρk〈(z1, ζ1)− χ(z2,−ζ2))〉
−N ,

(z, ζ) ∈ T ∗
R
2d,

hold for all k,N ∈ N, where

Lj = 〈Aj ,∇z,ζ〉

and Aj ∈ Λ′
χ for j = 1, 2, . . . , k.

Since dist2((z, ζ),Λ′
χ) ≍ |(z1, ζ1)−χ(z2,−ζ2))|

2 where dist denotes Euclidean distance

between a point and a subspace, and Λ′
−χ ⊆ T ∗

R
2d is transversal to Λ′

χ ⊆ T ∗
R
2d

(cf. [6, p. 11]) we can formulate the estimates as

|L1 · · ·LkT
χ
g⊗gK(z, ζ)| . (1 + dist((z, ζ),Λ′

−χ))
m−ρk (1 + dist((z, ζ),Λ′

χ))
−N ,

(z, ζ) ∈ T ∗
R
2d,

where k,N ∈ N.
Theorem 5.2 implies the following result which generalizes [6, Corollary 4.18].

Proposition 5.3. If χ ∈ Sp(d,R) and Kϕ,a ∈ K
m
ρ (χ) then

WF(Kϕ,a) ⊆ Λ′
χ \ 0 ⊆ T ∗

R
2d \ 0.

Proof. Let 0 6= (z0, ζ0) /∈ Λ′
χ. For some C > 0 we then have (z0, ζ0) ∈ V where the open

conic set V ⊆ T ∗
R
2d \ 0 is defined by

V = {(z, ζ) ∈ T ∗
R
2d \ 0 : |(z1, ζ1) + χ(z2,−ζ2)| < C|(z1, ζ1)− χ(z2,−ζ2)|}.

The conclusion is now a consequence of Theorem 5.2 with k = 0, and

|(z, ζ)|2 ≍ |(z1, ζ1) + χ(z2,−ζ2)|
2 + |(z1, ζ1)− χ(z2,−ζ2)|

2.

�
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Combining Proposition 5.3 with [17, Proposition 2.11] we obtain the following result
on propagation of Gabor singularities. An alternative proof can be given by combining
Theorem 4.15 with [22, Proposition 2.9 and Eq. (2.18)].

Corollary 5.4. If χ ∈ Sp(d,R) and K ∈ Im
ρ (χ) then

WF(K u) ⊆ χWF(u), u ∈ S
′(Rd).

Remark 5.5. More precisely the statement holds for the Sobolev–Gabor wave front set
for any s ∈ R (cf. [23]), as

WFQs−m(K u) ⊆ χWFQs(u), u ∈ S
′(Rd).

6. Γ-Lagrangian distributions

Here we introduce Lagrangian distributions adapted to the Shubin calculus. For
simplicity we work in Sections 6 and 7 with ρ = 1 but all results are true with natural
modifications if 0 6 ρ 6 1. Before giving a precise definition we need some preliminary
steps.

Let Λ ⊆ T ∗
R
d be a Lagrangian. Referring to Section 3 we can write

(6.1) Λ = {(X,FX + Z) ∈ T ∗
R
d, X ∈ Y, Z ∈ Y ⊥}

where Y ⊆ R
d is a linear subspace and F ∈ Md×d(R) is a symmetric matrix that leaves

Y invariant [21]. It then automatically leaves Y ⊥ invariant so can be written

F = FY + FY ⊥

where FY = πY FπY and FY ⊥ = πY ⊥FπY ⊥ .
The subspace Y ⊆ R

d is uniquely determined by Λ, but the matrix F is not. In fact
FY is uniquely determined, but FY ⊥ can be any matrix such that Y ⊆ KerFY ⊥ and FY ⊥

leaves Y ⊥ invariant.
For a symmetric F ∈ Md×d(R) we define

(6.2) χF =

(
I 0
F I

)
∈ Sp(d,R).

The corresponding metaplectic operator is µ(χF )f(x) = e
i
2
〈Fx,x〉f(x). Note that

(6.3) χF : Y × Y ⊥ → Λ

is an isomorphism.
We recall the notion of Γ-conormal distribution [6, Definition 5.1].

Definition 6.1. Suppose Y ⊆ R
d is an n-dimensional linear subspace, 0 6 n 6 d,

let N(Y ) = Y × Y ⊥, and let V ⊆ T ∗
R
d be a d-dimensional linear subspace such that

N(Y ) ⊕ V = T ∗
R
d. Then u ∈ S ′(Rd) is Γ-conormal to Y of degree m ∈ R, denoted

u ∈ ImΓ (Rd, Y ), if for any g ∈ S (Rd) \ 0 and for any k,N ∈ N we have

(6.4)

∣∣L1 · · ·LkT
Y
g u(x, ξ)

∣∣ . (1 + dist((x, ξ), V ))m−k (1 + dist((x, ξ), N(Y )))−N ,

(x, ξ) ∈ T ∗
R
d,

where

(6.5) T Y
g u(x, ξ) = e−i〈πY ⊥x,ξ〉Tgu(x, ξ), (x, ξ) ∈ T ∗

R
d,
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and Lj = 〈bj ,∇x,ξ〉 are first order differential operators with bj ∈ N(Y ), j = 1, . . . , k.

The space ImΓ (Rd, Y ) is equipped with a topology defined by seminorms of the best
constants in (6.4), cf. [6].

Proposition 6.2. If Y ⊆ R
d is a linear subspace, F ∈ Md×d(R) is symmetric, Y ⊆

KerF and χF ∈ Sp(d,R) is defined by (6.2), then

µ(χF ) : I
m
Γ (Rd, Y ) → ImΓ (Rd, Y )

is a homeomorphism.

Proof. Let u ∈ ImΓ (Rd, Y ) and let g ∈ S (Rd) \ 0. By Lemma 4.12

Tµ(χF )g(µ(χF )u)(x, ξ) = e
i
2
〈Fx,x〉Tgu(x, ξ − Fx).

From (6.5) we obtain

T Y
µ(χF )g(µ(χF )u)(x, ξ) = e

i
2
〈Fx,x〉−i〈π

Y ⊥x,ξ〉Tgu(x, ξ − Fx)

= e−
i
2
〈Fx,x〉−i〈π

Y ⊥x,ξ−Fx〉Tgu(x, ξ − Fx)

= e−
i
2
〈Fx,x〉T Y

g u(x, ξ − Fx).

A differential operator of the form 〈a,∇x〉 where a ∈ Y , applied to e−
i
2
〈Fx,x〉 equals

zero, due to the assumption Y ⊆ KerF . Therefore we get from Definition 6.1, for any
k,N ∈ N

(6.6)

∣∣∣L1 · · ·LkT
Y
µ(χF )g(µ(χF )u)(x, ξ)

∣∣∣

.
(
1 + dist((x, ξ − Fx), N(Y ⊥))

)m−k
(1 + dist((x, ξ − Fx), N(Y )))−N ,

(x, ξ) ∈ T ∗
R
d,

where Lj = 〈bj ,∇x,ξ〉 and bj ∈ N(Y ), j = 1, . . . , k.
We have

dist2(ξ − Fx, Y ⊥) = |πY (ξ − Fx)|2 = |πY ξ|
2 = dist2(ξ, Y ⊥).

By means of (2.1) we estimate

1 + dist2((x, ξ − Fx), N(Y ⊥)) = 〈(πY x, πY ⊥(ξ − Fx))〉2

. 〈(πY x, πY ⊥ξ)〉2〈πY ⊥x〉2

. (1 + dist2((x, ξ), N(Y ⊥))) (1 + dist2((x, ξ), N(Y )))

and similarly

1 + dist2((x, ξ), N(Y ⊥))

. (1 + dist2((x, ξ − Fx), N(Y ⊥))) (1 + dist2((x, ξ), N(Y ))).

Thus for any s ∈ R

(1 + dist((x, ξ − Fx), N(Y ⊥)))s

. (1 + dist((x, ξ), N(Y ⊥)))s (1 + dist((x, ξ), N(Y )))|s|,
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and it follows upon insertion into (6.6) that we have
∣∣∣L1 · · ·LkT

Y
µ(χF )g(µ(χF )u)(x, ξ)

∣∣∣

.
(
1 + dist((x, ξ), N(Y ⊥))

)m−k
(1 + dist((x, ξ), N(Y )))−N ,

(x, ξ) ∈ T ∗
R
d,

for any k,N ∈ N.
By virtue of Definition 6.1 we have proven that µ(χF ) maps ImΓ (Rd, Y ) into itself, and

the continuity is a consequence of the argument. The inverse of µ(χF ) is also continuous
since χ−1

F = χ−F . �

Now we can define Γ-Lagrangian distributions.

Definition 6.3. Suppose Λ ⊆ T ∗
R
d is a Lagrangian defined by a linear subspace Y ⊆ R

d

and a symmetric matrix F ∈ Md×d(R) such that F : Y → Y , as in (6.1). Then
u ∈ S ′(Rd) is called a Γ-Lagrangian distribution with respect to Λ of order m ∈ R,
denoted u ∈ ImΓ (Rd,Λ) if u = µ(χF )v for some v ∈ ImΓ (Rd, Y ).

Remark 6.4. Note that S (Rd) ⊆ ImΓ (Rd,Λ) for any Lagrangian Λ ⊆ T ∗
R
d, cf. [6,

Corollary 5.10]. Hence we may calculate modulo Schwartz functions when determining
whether a distribution is Γ-Lagrangian.

As discussed above the matrix F is not unique in that FY ⊥ may be arbitrary within
its stipulated restrictions. But since χF = χFY +F

Y ⊥
= χFY

χF
Y ⊥

implies

µ(χF ) = ±µ(χFY
)µ(χF

Y ⊥
),

Definition 6.3 does not depend on FY ⊥ , due to Proposition 6.2.
The space ImΓ (Rd,Λ) is endowed with the topology on v ∈ ImΓ (Rd, Y ) referring to the

factorization u = µ(χF )v of u ∈ ImΓ (Rd,Λ). Again Proposition 6.2 serves to rid the

topology on ImΓ (Rd,Λ) of dependence on the matrix F .

Remark 6.5. The space ImΓ (Rd,Λ) reduces to ImΓ (Rd, Y ) when Λ is of the form Λ =

Y × Y ⊥ ⊆ T ∗
R
d for a linear subspace Y ⊆ R

d.

Example 6.6. Suppose 1 6 n 6 d− 1, k = d− n, Y = R
n × {0} ⊆ R

d, and

F =

(
A 0
0 0

)

where A ∈ Mn×n(R) is symmetric. Then

Λ = {(x1, 0, Ax1, x2) ∈ T ∗
R
d : x1 ∈ R

n, x2 ∈ R
k}.

By [6, Lemma 5.4] a distribution u ∈ ImΓ (Rd,Λ) is of the form

u(x1, x2) =

∫

Rk

ei(
1

2
〈x1,Ax1〉+〈x2,θ〉)a(x1, θ) dθ

for a ∈ Γm(Rd).
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As observed before Proposition 4.16, µ(χ) is a homeomorphism on Qs(Rd) for any
χ ∈ Sp(d,R) and any s ∈ R. From the estimates (6.4) we obtain therefore for any ε > 0

ImΓ (Rd,Λ) ⊆ Q−(m+ d
2
+ε)(Rd).

Microlocally, Γ-Lagrangian distributions are however usually more regular than generic

elements of Q−(m+ d
2
+ε)(Rd).

Combining [6, Proposition 5.17], [22, Eq. (2.18)] and (6.3) gives

Proposition 6.7. If u ∈ ImΓ (Rd,Λ) then WF(u) ⊆ Λ.

Lemma 6.8. Let 0 6 n 6 d, and suppose U = [M1 M2] ∈ O(d) with M1 ∈ Md×n(R)
and M2 ∈ Md×(d−n)(R) and Y = KerM t

2 ⊆ R
d. Define

(6.7) χU =

(
U 0
0 U

)
∈ Sp(d,R)

and

(6.8) J −1
2 =




In 0 0 0
0 0 0 −Id−n
0 0 In 0
0 Id−n 0 0


 ∈ Sp(d,R).

Then

χUJ −1
2 : Rd × {0} → Y × Y ⊥

is an isomorphism.

Proof. We have n = dimY . The assumptions give

χUJ−1
2 =

(
M1 0 0 −M2

0 M2 M1 0

)
∈ Sp(d,R).

Denoting x = (x1, x2) ∈ R
d with x1 ∈ R

n and x2 ∈ R
d−n we have

χUJ −1
2 (x, 0) = (M1x1,M2x2), x ∈ R

d,

which proves the claim since Y = RanM1 and Y ⊥ = RanM2. �

Lemma 6.9. If χ ∈ Sp(d,R) preserves R
d × {0} then µ(χ) is a homeomorphism on

Γm(Rd).

Proof. Using the block matrix notation (4.2), the properties (4.3), (4.4) and (4.14), the
assumption entails

χ =

(
A B
0 A−t

)
= −J

(
I 0

−BAt I

)
J

(
A 0
0 A−t

)
.

Note that BAt is symmetric and

Tf(x) := µ

(
A 0
0 A−t

)
f(x) = |A|−1/2f(A−1x) = |A|−1/2(A−1)∗f(x)

for f ∈ S (Rd). Combined with (4.16) and the notation (6.2) this gives

µ(χ) = ±F
−1µ(χ−BAt)FT.
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Clearly T is a homeomorphism on Γm(Rd). By [6, Corollary 5.5 and Proposition 5.12]
F : Γm(Rd) → ImΓ (Rd, {0}) is a homeomorphism. The claim is hence a consequence

of the fact that µ(χ−BAt) is a homeomorphism on ImΓ (Rd, {0}), which is granted by
Proposition 6.2. �

Next we observe that pseudodifferential operators act well on Γ-Lagrangian distribu-
tions. This generalizes [6, Proposition 5.19].

Lemma 6.10. Let a ∈ Γm
′

(R2d) and suppose Λ ⊆ T ∗
R
d is a Lagrangian. Then

aw(x,D) : ImΓ (Rd,Λ) → Im+m′

Γ (Rd,Λ)

is continuous.

Proof. In [6, Proposition 5.19] the continuity

(6.9) aw(x,D) : ImΓ (Rd, Y ) → Im+m′

Γ (Rd, Y )

is proved. Suppose u ∈ ImΓ (Rd,Λ), that is u = µ(χF )v where v ∈ ImΓ (Rd, Y ) and where

F ∈ Md×d(R) and Y ⊆ R
d are associated to Λ as in (6.1). We obtain using (2.6)

aw(x,D)u = µ(χF )µ(χF )
−1aw(x,D)µ(χF )v

= µ(χF )(a ◦ χF )
w(x,D)v

which proves the result since (a ◦ χF )
w(x,D)v ∈ Im+m′

Γ (Rd, Y ) by (6.9). The continuity
claim is a consequence of the continuity (6.9) and the definition of the topology on
ImΓ (Rd,Λ). �

With the help of Lemma 6.10 we can prove a continuity result for FIOs acting on
Γ-Lagrangian distributions. Note that χΛ ⊆ T ∗

R
d is Lagrangian provided Λ ⊆ T ∗

R
d is

Lagrangian and χ ∈ Sp(d,R).

Theorem 6.11. Suppose χ ∈ Sp(d,R), K ∈ Im′

(χ) and let Λ ⊆ T ∗
R
d be a Lagrangian.

Then
K : ImΓ (Rd,Λ) → Im+m′

Γ (Rd, χΛ)

is continuous.

Proof. By Theorem 4.15, K = bw(x,D)µ(χ) for b ∈ Γm
′

(R2d). Appealing to Lemma
6.10 it therefore suffices to show that

µ(χ) : ImΓ (Rd,Λ) → ImΓ (Rd, χΛ)

is continuous.
Suppose Λ ⊆ T ∗

R
d is parametrized by Y ⊆ R

d and F ∈ Md×d(R) as in (6.1), and
likewise that the Lagrangian χΛ ⊆ T ∗

R
d is parametrized by Y ′ ⊆ R

d and F ′ ∈ Md×d(R).
Let u ∈ ImΓ (Rd,Λ) so that u = µ(χF )v with v ∈ ImΓ (Rd, Y ).

We need to show

µ(χ)u = µ(χ)µ(χF )v = µ(χF ′)v′(6.10)

for some v′ ∈ ImΓ (Rd, Y ′).

Set n = dimY . By [6, Proposition 5.9] we have v ∈ ImΓ (Rd, Y ) if and only if there

exists a ∈ Γm(Rd) and U = [M1 M2] ∈ O(d), with M1 ∈ Md×n(R), M2 ∈ Md×(d−n)(R)
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and Y = KerM t
2, such that v = U t∗F−1

2 a. Since U t∗ = µ(χU ) and F
−1
2 = µ(J −1

2 ) using

the notation (6.7) and (6.8), we may write v = ±µ(χUJ −1
2 )a.

Thus (6.10) may be written

±µ(χχF χ
UJ−1

2 )a = µ(χF ′)v′.

Again by [6, Proposition 5.9], the claim v′ ∈ ImΓ (Rd, Y ′) can be proved by showing

v′ = µ(χV J−1
2 )b where b ∈ Γm(Rd), V = [N1 N2] ∈ O(d), with N1 ∈ Md×k(R) and

N2 ∈ Md×(d−k)(R) such that Y ′ = KerN t
2 and k = dimY ′.

With these terms we must show

b = µ(J2 χ
V t

χ−1
F ′ χχF χ

U J −1
2 )a ∈ Γm(Rd)

and also the continuity of a 7→ b on Γm(Rd) (cf. [6]).
Set

χ0 = J2 χ
V t

χ−1
F ′ χχF χ

U J−1
2 ∈ Sp(d,R)

so that b = µ(χ0)a.
From Lemma 6.8, and by definition of Λ and χΛ, and (6.3), we obtain the following

sequence of isomorphisms concerning the symplectic matrices at hand.

R
d × {0}

χUJ−1

2−→ Y × Y ⊥ χF−→ Λ
χ

−→ χΛ
χ−1

F ′

−→ Y ′ × Y ′⊥ J2χV t

−→ R
d × {0}.

Hence χ0 restricts to an isomorphism on R
d × {0}. The claim is thus a consequence of

Lemma 6.9. �

Lemma 6.8, (6.3) and the proof of Theorem 6.11 give the following characterization
of Γ-Lagrangian distributions.

Corollary 6.12. A distribution u ∈ S ′(Rd) satisfies u ∈ ImΓ (Rd,Λ) if and only if there

exist χ ∈ Sp(d,R) that maps χ : Rd × {0} → Λ isomorphically, and a ∈ Γm(Rd) such
that u = µ(χ)a.

Remark 6.13. Given a Lagrangian Λ ⊆ T ∗
R
d, the existence of χ ∈ Sp(d,R) with the

stipulated property is a consequence of Lemma 6.8 and (6.3). By Lemma 6.9, the
equivalent statement in Corollary 6.12 can be reformulated as follows. For all χ ∈
Sp(d,R) that maps χ : Rd × {0} → Λ isomorphically there exists a ∈ Γm(Rd) such that
u = µ(χ)a.

Finally we prove a time-frequency characterization of Γ-Lagrangian distributions sim-
ilar to that of conormal distributions, see Definition 6.1. Without loss of generality we
may assume Y ⊥ ⊆ KerF .

Proposition 6.14. Let Λ ⊆ T ∗
R
d be a Lagrangian and let V ⊆ T ∗

R
d be a subspace

transversal to Λ. Suppose Λ is parametrized by Y ⊆ R
d and F ∈ Md×d(R) as in (6.1).

A distribution u ∈ S ′(Rd) satisfies u ∈ ImΓ (Rd,Λ) if and only if for any g ∈ S (Rd) \ 0
and for any k,N ∈ N we have

(6.11)

∣∣L1 · · ·LkT
Λ
g u(x, ξ)

∣∣ . (1 + dist((x, ξ), V ))m−k (1 + dist((x, ξ),Λ))−N ,

(x, ξ) ∈ T ∗
R
d,
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where

(6.12) T Λ
g u(x, ξ) = e−i(〈πY ⊥x,ξ〉+

1

2
〈x,Fx〉)Tgu(x, ξ), (x, ξ) ∈ T ∗

R
d,

and Lj = 〈bj ,∇x,ξ〉 are first order differential operators with bj ∈ Λ, j = 1, . . . , k.

Proof. Note that (6.11) and (6.12) reduce to (6.4) and (6.5), respectively, when Λ =
Y × Y ⊥.

We have u ∈ ImΓ (Rd,Λ) if and only if u = µ(χF )v where v ∈ ImΓ (Rd, Y ). By Propo-

sition 6.2 we may assume Y ⊥ ⊆ KerF . Let g ∈ S (Rd) \ 0 and set h = µ(χF )
−1g ∈

S (Rd) \ 0. Lemma 4.12 and (6.5) give

T Λ
g u(x, ξ) = e−i〈πY ⊥x,ξ〉Thv(x,−Fx+ ξ)

= T Y
h v(x,−Fx+ ξ).

A differential operator L = 〈Z,∇x,ξ〉 with Z ∈ Λ = χF (Y × Y ⊥) is of the form

〈a,∇x + F∇ξ〉+ 〈b,∇ξ〉

where a ∈ Y and b ∈ Y ⊥. This operator acts as

(〈a,∇x + F∇ξ〉+ 〈b,∇ξ〉) (T
Λ
g u(x, ξ))

=
(
(〈a,∇1 − F∇2 + F∇2〉+ 〈b,∇2〉) T

Y
h v
)
(x,−Fx+ ξ)

=
(
〈(a, b),∇1,2〉T

Y
h v
)
(x,−Fx+ ξ).

The claim is now a consequence of Definition 6.1. To wit,

dist((x,−Fx+ ξ), N(Y )) = dist(χ−F (x, ξ), Y × Y ⊥) ≍ dist((x, ξ),Λ),

dist((x,−Fx+ ξ), N(Y ⊥)) ≍ dist((x, ξ), χF (Y
⊥ × Y )),

and χF (Y
⊥ × Y ) ⊆ T ∗

R
d is transversal to Λ. �

7. Kernels of FIOs and Γ-Lagrangian distributions

In this section we prove that the kernels of FIOs associated to χ ∈ Sp(d,R) are the
Γ-Lagrangian distributions associated with the twisted graph Lagrangian Λ′

χ.

Lemma 7.1. If χ ∈ Sp(d,R) then there exists θ ∈ R such that

µ(χ)⊗ id = eiθµ(χ2)

where χ2 ∈ Sp(2d,R) is defined by

χ2(x, ξ) = (χ(x1, ξ1)1, x2, χ(x1, ξ1)2, ξ2) ,

x = (x1, x2) ∈ R
2d, ξ = (ξ1, ξ2) ∈ R

2d.

Proof. Let f, g, h, q ∈ S (Rd). From (2.3), (2.4) and (2.6) we obtain

W (µ(χ)h⊗ q, µ(χ)f ⊗ g)(x, ξ) =W (µ(χ)h, µ(χ)f)(x1, ξ1)W (q, g)(x2, ξ2)

=W (h, f)(χ−1(x1, ξ1))W (q, g)(x2, ξ2).
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Again using (2.3) this gives for a ∈ S (R4d)
(
(µ(χ)−1 ⊗ id)aw(x,D)(µ(χ)⊗ id)(f ⊗ g), h ⊗ q

)

= (aw(x,D)(µ(χ)f ⊗ g), µ(χ)h ⊗ q)

= (2π)−d(a,W (µ(χ)h ⊗ q, µ(χ)f ⊗ g))

= (2π)−d(b,W (h⊗ q, f ⊗ g))

= (bw(x,D)(f ⊗ g), h ⊗ q)

where

b(x, ξ) = a (χ(x1, ξ1)1, x2, χ(x1, ξ1)2, ξ2)

= a(χ2(x, ξ)).

Appealing to [26, Theorem 51.6] we have thus shown

(7.1) (µ(χ)−1 ⊗ id) aw(x,D) (µ(χ) ⊗ id) = (a ◦ χ2)
w(x,D).

The following calculation for (x, ξ), (y, η) ∈ T ∗
R
2d shows that χ2 ∈ Sp(2d,R).

σ (χ2(x, ξ), χ2(y, η))

= σ ((χ(x1, ξ1)1, x2, χ(x1, ξ1)2, ξ2), (χ(y1, η1)1, y2, χ(y1, η1)2, η2))

= 〈χ(x1, ξ1)2, χ(y1, η1)1〉+ 〈ξ2, y2〉 − 〈χ(x1, ξ1)1, χ(y1, η1)2〉 − 〈x2, η2〉

= σ(χ(x1, ξ1), χ(y1, η1)) + σ(x2, ξ2, y2, η2)

= σ(x1, ξ1, y1, η1) + σ(x2, ξ2, y2, η2)

= 〈y1, ξ1〉 − 〈x1, η1〉+ 〈y2, ξ2〉 − 〈x2, η2〉

= σ((x, ξ), (y, η)).

Combining (7.1) with (2.3) and (2.6) we get

W ((µ(χ)⊗ id)g, (µ(χ) ⊗ id)f) =W (µ(χ2)g, µ(χ2)f)

for all f, g ∈ S (R2d) which implies µ(χ)⊗ id = eiθµ(χ2) for some θ ∈ R. �

Theorem 7.2. If χ ∈ Sp(d,R) then

Km(χ) = ImΓ (R2d,Λ′
χ).

Proof. First we prove Km(χ) ⊆ ImΓ (R2d,Λ′
χ).

Let Kϕ,a ∈ Km(χ). By Theorem 4.15 we have Kϕ,a = µ(χ)bw(x,D) for some b ∈
Γm(R2d). Define

χ∆ =




Id 0 0 0
Id 0 0 Id
0 Id Id 0
0 −Id 0 0


 ∈ M4d×4d(R).

Then χ∆ ∈ Sp(2d,R) and

χ∆ : R2d × {0} → ∆×∆⊥

isomorphically, cf. (3.27). The kernel of bw(x,D) is denoted Kb (cf. (2.2)), and Kb ∈
ImΓ (R2d,∆) (see [6, Example 5.2]). By Corollary 6.12 and Remark 6.13 we have Kb =

µ(χ∆)b1 for some b1 ∈ Γm(R2d).
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This gives for f, g ∈ S (Rd)

(Kϕ,a, g ⊗ f) = (Kϕ,af, g)

= (µ(χ)bw(x,D)f, g)

= (bw(x,D)f, µ(χ)−1g)

= (Kb, µ(χ)
−1g ⊗ f)

= (µ(χ∆)b1, µ(χ)
−1g ⊗ f)

= ((µ(χ) ⊗ id)µ(χ∆)b1, g ⊗ f)

and it follows

(7.2) Kϕ,a = (µ(χ)⊗ id)µ(χ∆)b1.

By Lemma 7.1 we have

(7.3) µ(χ)⊗ id = eiθµ(χ2)

where θ ∈ R and χ2 ∈ Sp(2d,R) is defined by

χ2(x, ξ) = (χ(x1, ξ1)1, x2, χ(x1, ξ1)2, ξ2) ,

x = (x1, x2) ∈ R
2d, ξ = (ξ1, ξ2) ∈ R

2d.

Insertion of (7.3) into (7.2) yields

(7.4) Kϕ,a = ±eiθµ(χ2χ∆)b1.

For (x, ξ) ∈ R
2d we obtain

χ2χ∆(x, ξ, 0, 0) = χ2(x, x, ξ,−ξ)

= (χ(x, ξ)1, x, χ(x, ξ)2,−ξ)

and it follows that

χ2χ∆ : R2d × {0} → Λ′
χ

isomorphically. Again appealing to Corollary 6.12 we may conclude from (7.4) that
Kϕ,a ∈ ImΓ (R2d,Λ′

χ). This proves K
m(χ) ⊆ ImΓ (R2d,Λ′

χ).

It remains to show the opposite inclusion ImΓ (R2d,Λ′
χ) ⊆ Km(χ). LetK ∈ ImΓ (R2d,Λ′

χ),
and denote by K the operator with kernel K. By Corollary 6.12 and Remark 6.13 we
have K = µ(χ2χ∆)b for some b ∈ Γm(R2d), and K1 = µ(χ∆)b ∈ ImΓ (R2d,∆). If we de-
note by K1 the operator with kernel K1 then [6, Example 5.2] shows that K1 = aw(x,D)
with a ∈ Γm(R2d).

Using Lemma 7.1 we obtain for f, g ∈ S (Rd)

(K f, g) = (µ(χ2χ∆)b, g ⊗ f)

= ±e−iθ((µ(χ)⊗ id)K1, g ⊗ f)

= ±e−iθ(K1, µ(χ)
−1g ⊗ f)

= ±e−iθ(aw(x,D)f, µ(χ)−1g)

= ±e−iθ(µ(χ)aw(x,D)f, g)
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and it follows that K = µ(χ)aw(x,D) with a ∈ Γm(R2d). By Theorem 4.15 this means
that K ∈ Km(χ) which proves ImΓ (R2d,Λ′

χ) ⊆ Km(χ). �
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[15] B. Helffer and D. Robert, Comportement asymptotique précisé du spectre d’opérateurs globalement
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