The growth of neural networks complexity has led to adopt of hardware-accelerators to cope with the computational power required by the new architectures. The possibility to adapt the network for different platforms enhanced the interests of safety-critical applications. The reliability evaluation of neural networks are still premature and requires platforms to measure the safety standards required by mission-critical applications. For this reason, the interest in studying the reliability of neural networks is growing. We propose a new approach for evaluating the resiliency of neural networks by using hybrid platforms. The approach relies on the reconfigurable hardware for emulating the target hardware platform and performing the fault injection process. The main advantage of the proposed approach is to involve the on-hardware execution of the neural network in the reliability analysis without any intrusiveness into the network algorithm and addressing specific fault models. The implementation of FireNN, the platform based on the proposed approach, is described in the paper. Experimental analyses are performed using fault injection on AlexNet. The analyses are carried out using the FireNN platform and the results are compared with the outcome of traditional software-level evaluations. Results are discussed considering the insight into the hardware level achieved using FireNN.

FireNN: Neural Networks Reliability Evaluation on Hybrid Platforms / De Sio, C.; Azimi, S.; Sterpone, L.. - In: IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING. - ISSN 2168-6750. - ELETTRONICO. - 10:2(2022), pp. 549-563. [10.1109/TETC.2022.3152668]

FireNN: Neural Networks Reliability Evaluation on Hybrid Platforms

De Sio C.;Azimi S.;Sterpone L.
2022

Abstract

The growth of neural networks complexity has led to adopt of hardware-accelerators to cope with the computational power required by the new architectures. The possibility to adapt the network for different platforms enhanced the interests of safety-critical applications. The reliability evaluation of neural networks are still premature and requires platforms to measure the safety standards required by mission-critical applications. For this reason, the interest in studying the reliability of neural networks is growing. We propose a new approach for evaluating the resiliency of neural networks by using hybrid platforms. The approach relies on the reconfigurable hardware for emulating the target hardware platform and performing the fault injection process. The main advantage of the proposed approach is to involve the on-hardware execution of the neural network in the reliability analysis without any intrusiveness into the network algorithm and addressing specific fault models. The implementation of FireNN, the platform based on the proposed approach, is described in the paper. Experimental analyses are performed using fault injection on AlexNet. The analyses are carried out using the FireNN platform and the results are compared with the outcome of traditional software-level evaluations. Results are discussed considering the insight into the hardware level achieved using FireNN.
File in questo prodotto:
File Dimensione Formato  
FireNN_cd_2.2.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 878.51 kB
Formato Adobe PDF
878.51 kB Adobe PDF Visualizza/Apri
FireNN_Neural_Networks_Reliability_Evaluation_on_Hybrid_Platforms.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.85 MB
Formato Adobe PDF
2.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2958120