We provide a theoretical analysis of some autocatalytic reaction networks exhibiting the phenomenon of discreteness-induced transitions. The family of networks that we address includes the celebrated Togashi and Kaneko model. We prove positive recurrence, finiteness of all moments and geometric ergodicity of the models in the family. For some parameter values, we find the analytic expression for the stationary distribution and discuss the effect of volume scaling on the stationary behaviour of the chain. We find the exact critical value of the volume for which discreteness-induced transitions disappear.

Stationary distributions of systems with discreteness-induced transitions / Bibbona, E.; Kim, J.; Wiuf, C.. - In: JOURNAL OF THE ROYAL SOCIETY INTERFACE. - ISSN 1742-5689. - STAMPA. - 17:168(2020), p. 20200243. [10.1098/rsif.2020.0243]

Stationary distributions of systems with discreteness-induced transitions

Bibbona E.;
2020

Abstract

We provide a theoretical analysis of some autocatalytic reaction networks exhibiting the phenomenon of discreteness-induced transitions. The family of networks that we address includes the celebrated Togashi and Kaneko model. We prove positive recurrence, finiteness of all moments and geometric ergodicity of the models in the family. For some parameter values, we find the analytic expression for the stationary distribution and discuss the effect of volume scaling on the stationary behaviour of the chain. We find the exact critical value of the volume for which discreteness-induced transitions disappear.
File in questo prodotto:
File Dimensione Formato  
published.pdf

accesso aperto

Descrizione: originale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF Visualizza/Apri
2001.04917.pdf

accesso aperto

Descrizione: postprint
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2955798