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We provide a theoretical analysis of some autocatalytic reaction networks exhibiting the phe-
nomenon of discreteness induced transitions. The family of networks that we address includes the
celebrated Togashi and Kaneko model. We prove positive recurrence, finiteness of all moments, and
geometric ergodicity of the models in the family. For some parameter values, we find the analytic
expression for the stationary distribution, and discuss the effect of volume scaling on the stationary
behavior of the chain. We find the exact critical value of the volume for which discreteness induced
transitions disappear.

I. INTRODUCTION

In 2001, Togashi and Kaneko described a cycle of
stochastic autocatalytic reactions that displays a highly
peculiar dynamics in some regions of the parameter space
[1].

It is characterized by switches between patterns where
one or more reactants are present in small or vanish-
ing molecule number while other reactants are abundant.
The switching is triggered by a single molecule of a pre-
viously extinct species that drives the system to a differ-
ent pattern through a sequence of quick reactions. The
switches were named Discreteness Induced Transitions
(DIT) since deterministic ODE models are not able to
reproduce them [1].

The paper raised much interest and similar effects have
been observed in more complicated and realistic models,
e.g., large scale networks [2], particle systems with fi-
nite interaction radius [3], reaction-diffusion systems [4],
models of ant foraging [5], chiral autocatalysis [6], tumor
growth [7], spatial models [8], and viral replication [9].

Several attempts have been made to underpin the phe-
nomenon theoretically, at least in simplified toy models,
through derivation of analytic expressions, without re-
sorting to simulation or approximation. Examples in this
direction are [10–13], though many questions are still un-
solved.

Despite simulation of the Togashi-Kaneko (TK) model
indicates a stationary behavior after a short transient
time, positive recurrence (existence of a unique station-
ary distribution) of the corresponding continuous-time
Markov chain (CTMC) has not been proved. For the
original 4-dim TK model, no general result from Chem-
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ical Reaction Network theory is applicable. Even if the
system is reduced to dimension two, the problem of find-
ing a stationary distribution remains non-trivial, and the
curious switching behavior persists. In dimensions four
and two, the switching behavior causes the seemingly sta-
tionary distribution emerging from simulation to be mul-
timodal for certain parameters values. When the rates
are scaled in the volume V of the container and V is con-
sidered large, the multimodality disappears and a distri-
bution with a concentrated peak emerges. In this case,
the scaled stochastic model converges to the classical de-
terministic model (fluid limit).

In this paper, we prove that a family of autocatalytic
networks, including the TK model, is positive recurrent
in arbitrary dimension (Theorem 2). For some parameter
values, an explicit expression for the stationary distribu-
tion is derived. In 2-dim (cf. Theorem 1) the parame-
ter region for which the stationary distribution is known
covers the 2-dim TK model. In higher dimension (cf.
Theorem 3) the parameter region for which the station-
ary distribution is known, does not include the general
TK model. However, it includes a large family of TK-like
models exhibiting DITs..

The analytic form of the stationary distribution pro-
vides a clear theoretical demonstration of the effect of
volume scaling on the stationary behavior of the system.
It also allows us to find the exact critical value of the
volume from which the DIT stops to appear. This value
we also find for the TK model.

II. BACKGROUND MATERIAL

A. The original 4-dim TK model

Let N = {0, 1, 2, . . .} denote the integers including zero.
For any two integers i and n, let (i)n be the remain-
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der after integer division of i by n (elsewhere denoted by
i mod n). The network proposed by Togashi and Kaneko
[1] consists of the following cycle of autocatalytic reac-
tions

Ai +A(i+1)4
κ−−→ 2A(i+1)4 , i = 1, . . . , 4, (1)

together with inflow and outflow reactions

Ai
δ−−⇀↽−−
λ
∅, i = 1, . . . , 4.

The state of the system is a tuple of four non-negative
integers a = (a1, a2, a3, a4)′. Denote by ej the j-th unit
vector, j = 1, . . . , 4. The transitions rates generated by
the autocatalytic reactions are

qa,a−ei+e(i+1)4
= κaia(i+1)4 ,

while those corresponding to inflow and outflow reactions
are

qa,a+ei = λ and qa,a−ei = δai.

The qualitative behavior of the system depends on the
parameter values. The classical volume scaling (cf. [14,
Chapter 11] or [15]) is adopted in [1], where the initial
molecule counts of the species are proportional to the
scaling parameter V . It implies the rate constants are
given by

κ =
κ′

V
δ = δ′ λ = λ′V

One parameter can always be set to one by linear scal-
ing of time. In [1], κ′ = 1, and further λ′ = δ′ = D
for simplification. According to [16] or [14, Chapter 11],
when V → ∞, the density process, which is the CTMC
rescaled by dividing the molecule numbers by V , con-
verges to the solution of a system of ordinary differen-
tial equations with stable equilibrium (1, 1, 1, 1). Indeed
when V D � 1, the reaction rates are large and the tra-
jectories of the density process only display small fluctu-
ations around the deterministic equilibrium.

For V D � 1, a completely different behavior appears,
triggered by the slow rate of inflow and DIT appears. If
the system is initialized at a state where all species counts
are large, one of the species at random (say, species 3)
is quickly driven to extinction by the fast autocatalytic
dynamics. At this point, several molecules of species 2
are produced and not consumed and they catalyze the
consumption of all molecules of species 1. We end up
with a configuration where the species 1 and 3 are both
consumed, the count of species 2 is very high, and that
of species 4 is quite low. We call this pattern 2H4L. In
this configuration only slow inflows and outflows are ac-
tive, and one needs to wait until a molecule of species
3 or 1 flows in before the autocatalytic dynamics starts
again leading to another pattern with two non-contiguous
species extinct. The dynamics of the system then pro-
ceeds by switching between such patterns in a way that
a 2H4L configuration is much more often followed by a
2L4H pattern and only rarely switches to either a 1H3L
or 1L3H configuration (cf. FIG 1 in [1]).

B. Lumpability

In the next Section we exploit the notion of lumpability
to find the stationary distribution in some cases. We
summarize here the meaning of this property.

Let {SI}I∈I be a partition of a denumerable state
space S of a CTMC X(t), t ≥ 0, with rates qij , i, j ∈ S.
Let moreover ι be the function that maps x ∈ S to the
index of the element of the partition to which x belong,
(i.e ι(x) = K if and only if x ∈ SK). The process
X(t), t ≥ 0, is (strongly) lumpable if the lumped pro-
cess X(t) = ι(X(t)), t ≥ 0, is a CTMC on I for any
choice of initial distribution. Sufficient conditions (cf.
[17]) that guarantees lumpability of a regular, irreducible,
positive recurrent CTMC X(t), t ≥ 0, on the partition
{SI}I∈I are that every subset SI is finite, and that for
any I, J ∈ I, and any i, i′ ∈ SI ,∑

j∈SJ

qij =
∑
j∈SJ

qi′j = qIJ

The rates of the lumped chain X(t), t ≥ 0, are qIJ ,
I, J ∈ I, and for any s < t, the lumped variable X(t) is
independent of Xs given Xs

III. THE 2-DIM TK MODEL

If the number of species in the TK model is reduced
to two, the reaction network becomes

2A1
κ1←−− A1 +A2

κ2−−→ 2A2

A1
δ1−−⇀↽−−
λ1

∅ λ2−−⇀↽−−
δ2

A2,
(2)

where we allow κ1 and κ2 to be different. The state of the
network is denoted by a = (a1, a2)′ ∈ N2, the molecule
counts of each species. The transitions rates due to the
autocatalytic reactions are

qa,a−e1+e2
= κ2a1a2, qa,a−e2+e1

= κ1a1a2, (3)

while those corresponding to inflow and outflow reactions
are

qa,a+ei = λi, qa,a−ei = δiai, i = 1, 2. (4)

The dynamics is simplified, but not too much. When
the inflows occur at a much slower rate than the au-
tocatalytic reactions, the system switches between two
patterns in a similar way to the original 4-dimensional
TK system, where one or the other compound is mostly
absent. A plot of the two simulated trajectories in this
parameter range is shown in FIG. 1.

A. Positive recurrence and stationary distribution

A proof of positive recurrence in a more general setting
is given in Section IV A. In this section, we show the



3

3500 4000 4500

0
10

20
30

40

time

m
ol

ec
ul

e 
co

un
ts

FIG. 1. Molecule counts of the two species of network (2)
along time. Patterns where the grey species is mostly absent
alternates with patterns where the mostly absent species is
the black one. Parameters are λi = 0.2, δi = 0.01, κi = 0.05
for i = 1, 2.

sketch of how to derive the stationary distribution of (2)
by using its lumpability. The subsets

En = {a ∈ N2 : a1 + a2 = n},

form a partition {En}n∈N of the state space. The CTMC
model X(t), t ≥ 0, of (2) under stochastic mass-action
kinetics is lumpable with respect to this partition if δ =
δ1 = δ2. With this choice, the rate at which the total
molecule count n is increased by one, is equal to the sum
of the rates of the inflows

qn,n+1 =

2∑
i=1

qa,a+ei
= λ1 + λ2,

independently of a. The rate at which n is decreased by
one, is the sum of the rates of the outflows

qn,n−1 =

2∑
i=1

qa,a−ei = δ(a1 + a2) = δn

and therefore it does not depend on a as long as a ∈ En.
The lumped process X(t), t ≥ 0, is described by the

following reaction network where a single species B ag-
gregates all molecules of A1 and A2

B
λ1+λ2−−−−⇀↽−−−−
δ
∅. (5)

Network (5) is weakly reversible and has deficiency
zero [18]. By [18, Theorem 3.6 and 3.7], it admits a
unique stationary distribution with Poisson law

ν(n) =
µn

n!
exp (−µ) , µ =

λ1 + λ2
δ

. (6)

where n is the state of the lumped process (i.e., X(t) = n
if and only if X(t) ∈ En). We now aim at factorizing the
stationary distribution Π(a) of the process X(t), t ≥ 0,
of (2) by conditioning on the stationary probability ν(n)
of the lumped process being in state n = a1 + a2. We
write

Π(a) = π(a1|n)ν(n). (7)

A careful rewriting of the master equation for the sta-
tionary distribution Π(a) shows that Π(a) is stationary
if and only if π(a|n) fulfils

Rn = Ln−1 + Ln + Ln+1 (8)

with

Rn =(λ1 + λ2 + nδ + (κ1 + κ2)a(n− a))π(a|n)

Ln−1 =
nδλ1
λ1 + λ2

π(a− 1|n− 1) +
nδλ2
λ1 + λ2

π(a|n− 1)

Ln =κ1(a+ 1)(n− a− 1)π(a+ 1|n)+

+ κ2(a− 1)(n− a+ 1)π(a− 1|n)

Ln+1 =
λ1 + λ2
n+ 1

(a+ 1)π(a+ 1|n+ 1)

+
λ1 + λ2
n+ 1

(n− a+ 1)π(a|n+ 1),

for n ≥ 0 and a = 0, . . . , n.
Unfortunately, there is not a simple way to find a

closed form expression of π(·|n) satisfying equation (8).
However, simulation of the process for different rate con-
stants, corresponding to different regimes of the volume
V (cf. Section III B for more details), indicates that the
conditional stationary distribution may be unimodal, flat
or concentrated at the boundaries (cf. FIG 2). Statistical
practice suggests the beta-binomial as a natural candi-
date for a discrete distribution on the integers {0, · · · , n}
that may display these behaviors. The next theorem con-
firms this, and FIG 2 provides a graphical comparison
between simulations and theoretical values in different
parameter settings.

Theorem 1. Network (2), assuming that κ = κ1 = κ2 >
0 and δ = δ1 = δ2 > 0, has a unique stationary distribu-
tion Π(a) that factorizes as (7), where ν(n) is given by
(6), and π(·|n) is given by the beta-binomial distribution

π(i|n) =

(
n

i

)
B(i+ α, n− i+ β)

B(α, β)
, i = 0, . . . , n, (9)

where

α =
δλ1

κ(λ1 + λ2)
, β =

δλ2
κ(λ1 + λ2)

, (10)

and

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, x, y > 0.

Proof. The proof is by direct verification, substituting ex-
pression (9) into equation (8). Calculations are displayed
in Appendix B in a more general context.

B. Volume scaling

Molecule counts and mass-action rates can be scaled
with the volume V in such a way that the scaled stochas-
tic system X(t)/V converges for large V to the solution
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FIG. 2. The effect of scaling and DIT. The conditional sta-
tionary distribution π(a1|n), cf. (7) from simulation (grey his-
tograms) and from (9) in Theorem 1 (red lines). Parameters
are chosen according to (11) with κ′i = 1, δ′i = λ′i = D = 0.01
for i = 1, 2. The volume parameter V differs in the three
panels to illustrate the effect of scaling, and n is chosen as
the mean of ν(n), which is 4000, 400, and 40, respectively;
implying that the mean of the scaled process X/V is (1, 1)
in all three cases. Simulation set-up: 2.75 · 106, 106, and 105

simulations (from upper to lower panel) were conducted with
fixed time T = 250, 50, 50, respectively (the stationary regime
already applies). Only values of a(T ) with a1(T )+a2(T ) = n
were kept, and the histogram of a1(T ) was plotted.

of the deterministic system on any finite time horizon, cf.
[14][Ch. 11, Theorem 2.1].

This is achieved for (3) and (4), under the hypothesis
of Theorem 1, by setting the constants to

κi =
κ′

V
δi = δ′, λi = λ′iV, (11)

for i = 1, 2. When V is not sufficiently large the stochas-
tic model differs significantly from the deterministic limit
[1] and starts to display the switching behavior (DIT) il-
lustrated in FIG 1.

In [1], the authors set

κ′i = 1, δ′i = λ′i = D, i = 1, 2. (12)

With this choice of the rate constants, by Theorem 1,
we know the explicit form of the stationary density, and
we can investigate the behavior of the system at every
V without resorting to simulations. The stationary con-
ditional density π(·|n) is beta-binomial with parameters
α = β = DV/2. The beta-binomial density is unimodal

FIG. 3. Smoothed representation of the stationary density
(7). In all panels D = 0.01. The volume parameter V is
different in the three panels to illustrate the effect of the scal-
ing. In panel A, V = 20 (same range as in FIG. 1). The
density is bimodal and concentrated at the boundaries, since
DIT are present. In panel B, V = 200 and the conditional
density (9) is uniform. In panel C, V = 2000 and the density
is concentrated around the deterministic equilibrium.

when α and β are both larger than one (that is, when
DV is larger than two) with the mass concentrated at
the equilibrium of the corresponding deterministic model.
When both α and β are smaller than one (that is, when
DV is small) the density becomes bimodal with most of
the mass at the boundaries. The intermediate case is
when α = β = 1 and the conditional distribution re-
duces to the discrete uniform distribution on {0, . . . , n}.
In other words, at the critical value DV = 2, the con-
ditional density flattens to π(a|n) = 1

n+1 for every a.

A pictorial representation of the density (7), at different
values of V with D fixed to the value 0.01 is given in
FIG. 3. The effect of the scaling is apparent. For graph-
ical convenience, the discrete density has been smoothed
to a continuous one.

To make this effect quantitatively apparent, in the gen-
eral setting where (11) holds but not necessarily (12), we
prove that for V → 0 the stationary distribution con-
centrates at the boundaries by showing that the condi-
tional probability π(0|n) + π(n|n) tends to one, for any
n. Indeed, inserting (11) into (10), we get α = α′V and
β = β′V with

α′ =
δλ′1

κ(λ′1 + λ′2)
and β′ =

δλ′2
κ(λ′1 + λ′2)

.

The sum of the two conditional probabilities reduces to

π(0|n) + π(n|n) = (13)

=

[
Γ(n+ α′V )]

Γ(α′V )
+

Γ(n+ β′V )

Γ(β′V )

]
Γ[(α′ + β′)V

Γ[n+ (α′ + β′)V ]
.

Whatever n is, since Γ(z) ∼ 1/z for z → 0, it is easily
seen that the sum tends to one as V → 0.

For large V , we show that the stationary distribution
ΠV of the scaled process X(t)/V concentrates around
the deterministic equilibrium (1, 1). The mean µV and
variance ΣV of ΠV might easily be computed (by condi-
tioning on n) from the first and second moments of the
Poisson distribution and the beta-binomial distribution.
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The explicit calculation is here only reported for two
components, but can be found for the others as well,

(µV )1 =
µ

V

α

α+ β

(ΣV )11 =
1

V 2

[
αβ

(α+ β)2
(α+ β)µ+ µ2 + µ

α+ β + 1
+ µ

α

α+ β

]
,

where µ is given in (6) and α and β in (10). Scaling the
parameters as in (11), it is easily observed that (µV )1 →
1 and (ΣV )11 → 0 for V →∞. With a little more effort,
the same result extends to the other components, that is,
we have

µV →
(
λ′1
δ′
,
λ′2
δ′

)
and ΣV →

(
0 0
0 0

)
.

In general, the agreement between the stochastic and
the deterministic model for large volumes only holds on
a finite time horizon only. Negative examples where the
two modelling paradigms differ asymptotically are dis-
cussed in [19, 20]. Our result shows that for large V ,
under the assumptions of Theorem 1, the stochastic and
the deterministic models of (2) are in agreement asymp-
totically.

IV. HIGHER DIMENSIONAL MODELS

In higher dimension there exist different models whose
2-dim reduction corresponds to network (2). One of them
is the 4-dim TK model (1), but also the network

2Ai
κji←−− Ai +Aj

κij−−→ 2Aj Ai
δi−−⇀↽−−
λi

∅, (14)

i, j = 1, . . . , d, i 6= j, can be seen as a d-dimensional
version of model (2). Network (14) includes (1) as a
special case for κij equal to κ when j = (i+ 1)d and zero
otherwise. Reaction rates are the obvious generalizations
of (3) and (4).

A. Positive recurrence

In this section, we state the positive recurrence of
the Markov process underlying the general d-dimensional
model (14). To do so, we show that V (x) = e‖x‖1 ,

where ‖x‖1 =
∑d
i=1 |xi|, is a Lyapunov function. Non-

explosivity and positivity, then, follow by the Foster-
Lyapunov criterion [21]. Additionally, as a by-product,
all moments of the stationary distribution are positive
and convergence to the stationary distribution is expo-
nentially fast. The detailed proof can be found in Ap-
pendix A.

Theorem 2. For any non-negative values of the param-
eters κij, κji, and for positive λi and δi, the CTMC asso-
ciated to the system (14) is positive recurrent on Nd (for

any d). Consequently, it has a unique stationary dis-
tribution supported on Nd. Moreover, all moments are
finite and the convergence to the stationary distribution
is exponentially fast.

B. Stationary distribution

1. The model

By the same argument as we used in dimension 2, un-
der the assumption of equal outflow rates (δi = δ for all
i = 1 · · · d), the process X(t), t ≥ 0, that counts the
molecules of each species is lumpable on the partition
{En}, where En = {a ∈ N2 :

∑
i ai = n}.

The lumped process X(t) =
∑
iXi(t) represents the

total molecule count. It follows a birth and death pro-
cess (as in (5)) with Poisson stationary distribution with
intensity

µ =

∑d
i=1 λi
δ

. (15)

Similarly to the 2-dim case, the stationary distribution
Π(a) factorizes as

Π(a) = π(a|n)ν(n). (16)

Theorem 3. Assume κij = κ > 0, i, j = 1, . . . , d, i 6= j,
δ = δ1 = · · · = δd > 0, and λi > 0 for all i. Then, model
(14) has a unique stationary distribution Π(a) expressed
as in (16), where ν(n) is given as in (6) and (15), and
π(·|n) is given by the Dirichlet-multinomial distribution

π(a|n) =

(
n

a

)
Γ(
∑d
i=1 αi)

Γ(n+
∑d
i=1 αi)

d∏
i=1

Γ(ai + αi)

Γ(αi)
(17)

where a is any d-dimensional integer vector with ‖a‖1 =
n, and

αi =
δλi

κ
∑d
i=1 λi

.

Proof. The proof is by direct verification, substituting
expression (17) into equation (16) using (6). Calculations
are displayed in Appendix B.

C. Volume scaling and other properties

The scaled process X(t)/V in dimension d has similar
properties to that of the scaled process in dimension 2. In
the case where the stationary distribution is known (The-
orem 3), we might proceed similarly to what was done in
dimension 2 and calculate the mean vector and covari-
ance matrix of the molecule counts, now using moment
properties of the Poisson and the Dirichlet-multinomial
distributions. Parameters are scaled according to

κ =
κ′

V
δ = δ′, λi = λ′iV, (18)
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for i = 1, · · · , d.
As the volume V increases towards infinity, it can be

shown that the mean vector converges to
(
λ1

δ , . . . ,
λd

δ

)
,

the equilibrium point of the deterministic process, and
the covariance matrix decreases towards the zero matrix.
Thus, under the hypothesis of Theorem 3, the determin-
istic and the stochastic models of (14) are in agreement
asymptotically for large volume size in the long run (at
stationarity) as well as over the finite time horizon.

At the other extreme, for V → 0, the conditional prob-
ability of a corner configuration tends to one. Indeed,
such probability, that generalizes (13), is equal to

d∑
i=1

π(ei|n) =
Γ(V

∑
j α
′
j)

Γ(n+ V
∑
j α
′
j)

d∑
i=1

Γ(n+ V α′i)

Γ(V α′i)
,

where

α′i =
δλ′i

κ
∑
j λ
′
j

.

The convergence to one can be easily shown with the
same methodology used in dimension 2.

The peaks at the vertexes reflect the presence of DIT
that causes the switch between dynamical patterns where
only one of the species is present in large quantity at a
time, while all the others are almost extinct. A graphical
illustration of the presence of DITs in a three dimensional
version of model (14) is given in FIG. 4. In dimension
three it is no longer possible to plot the stationary distri-
bution Π(a). However, choosing D = 0.01 and V = 20,
we can plot a set of simulated trajectories, and the values
of the conditional stationary distribution π(a|n).

If parameter are further chosen as

κ′i = 1, δ′i = λ′i = D, i = 1, · · · , d, (19)

in analogy of what was done in [1], the distribution be-
comes symmetric in the labels of the species and the
αi = DV/d, i = 1, . . . , d, are all equal. Moreover if
V = d

D , the conditional distribution is flat, providing
a transition point from the multimodal case to the uni-
modal case. If the αis are not equal (i.e. the λ′i are not),
the transition will not proceed through a flat conditional
distribution.

Other relevant properties of the Dirichlet-multinomial
distribution, like aggregation, marginals, conditional dis-
tributions are discussed in [22, 23].

D. Back to the d-dim TK model

Model (1) motivated our interest in autocatalytic net-
works. Theorem 2 guarantees that it is positive recur-
rence, but an explicit form of the stationary distribution
cannot be derived by Theorem 3. Indeed, it is a special
case of (14), where some of the κij are set to zero (those
for which j 6= (i+ 1)d) and all others are set to the same
value κ. However, it is still possible to find the explicit
expression in a very special case.

1500 1600 1700 1800 1900 2000

0
20

40
60

time

m
ol

ec
ul

e 
co

un
ts

1e-05

1e-04

1e-03

1e-02

1e-01

0

30

60

0

30

60

30

60

a1 a2

a3

a1+a2+a3=60

FIG. 4. Simulated trajectories and the conditional station-
ary distribution π(a|n), from model (14) in dimension three.
Parameters are chosen according to (19) with D = 0.01 and
V = 20. The value of n is fixed to 60 in the lower plot. The
presence of DITs is apparent both from the trajectories and
from the conditional distribution that is concentrated at the
corners of the simplex.

Theorem 4. Assume that κ = κ1 = · · · = κd ≥ 0 and
δ = δ1 = · · · = δd = d

d−1κ and λ = λ1 = · · · = λd >

0. Then, model (1) has a unique stationary distribution
Π(a) whose expression is (16) with ν(n) given by (6) and
(15) and with π(·|n) given by a uniform distribution

π(a|n) =
n!(d− 1)!

(n+ d− 1)!
(20)

on the simplex {a ∈ {0, . . . n}d : ‖a‖1 = n}.

The proof is by direct verification, substituting expres-
sion (20) into equation (16) with κij set to zero for all
j 6= (i+ 1)d and to the same value κ otherwise. Calcula-
tions are displayed in Appendix C. If the rate constants
are scaled in the volume as in equation (18) and further
set to (19), the critical value of the volume that makes
the distribution flat is V = d

(d−1)D , in agreement with

the result for d = 2. In 4-dim, in [1], it was noticed from
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simulation that the order of the magnitude of this critical
value should be around V ∼ 1/D. However, determin-
ing the exact value was pursued. Our result allows us to
ensure that the exact value is V = 4/3D.
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APPENDIX

In this Appendix, we report the detailed proofs of the
three main theorems (Theorem 2, 3, 4) that are stated
in Section IV. Theorem 1 is not proved separately since
it is a special case of Theorem 3. The most general high
dimensional model that we consider is that in (14), that
we repeat here

2Ai
κji←−− Ai +Aj

κij−−→ 2Aj Ai
δi−−⇀↽−−
λi

∅.

Appendix A

As we stated in the main text, the associated CTMC
for the general dimensional model (14) is positive recur-
rent and admits a unique stationary distribution. We
prove this in the following theorem. We further show
that the CTMC is exponentially ergodic meaning that
the associated distribution P t at time t converges to the
unique stationary distribution exponentially fast. The
proof relies on the Foster-Lyapunov criterion [21]. We
begin with a formal statement and necessary concepts
for the Foster-Lyapunov criterion.

Definition 1. For a CTMC X(t), t ≥ 0, defined on a
countable state space χ, the infinitesimal generator L is
the operator

LV (x) =
∑
η

λη(x)(V (x+ η)− V (x)),

where η is a transition of X(t), λη is the transition rate
associated with η, and V is any real function defined on
the state space.

For a CTMC X(t), t ≥ 0, we define a truncated process
XM such that XM (t) = X(t) if |X(t)| < M and XM (t) =
xM otherwise for some fixed state xM with |xM | ≥ M .
We denote by LM the infinitesimal generator of XM .

We further call V (x) a norm-like function if V (x) is a
positive function such that |V (x)| → ∞, as |x| → ∞.

The following theorem is Theorem 6.1 in [21], in the
case of a countable state space. It is one version of the
Foster-Lyapunov criterion for exponential ergodicity.

Theorem A (Foster-Lyapunov criterion [21]). Let X(t),
t ≥ 0, be a CTMC defined on a countable state space χ.
Then X(t), t ≥ 0, is non-explosive and positive recur-
rent if there exist a norm-like function V on χ, positive
constants C and D such that for any M > 0

LMV (x) ≤ −CV (x) +D for all x ∈ χ.

Furthermore, X(t), t ≥ 0, admits a unique stationary
distribution π on each irreducible component, and there
exist B > 0 and β ∈ (0, 1) such that

sup
A
|P t(x,A)− π(A)| ≤ BV (x)βt for all x ∈ χ.

To show positive recurrence and exponential ergodicity
of the CTMC associated with the general model (14), it
is therefore sufficient to prove that there exist a norm-like
function V and positive constants C,D such that

LV (x) ≤ −CV (x) +D for all x. (21)

In the proof of the following theorem, we prove (21) for
an exponential function V . Using this specific function,
we also show that all moments of the unique stationary
distribution of X(t), t ≥ 0, are finite.

Proof of Theorem 2. Let X(t), t ≥ 0, be the CTMC as-
sociated with the system (14). Let V (x) = e‖x‖1 , where

‖x‖1 =
∑d
i=1 |xi|. Then we show that (21) holds for some

positive constants C and D.
Let ei ∈ Nd be the vector with i-th component 1 and

zero otherwise. We have

LV (x) =
∑
i,j

κijxixj(V (x+ ei − ej)− V (x))

+
∑
i,j

κijxixj(V (x+ ei − ej)− V (x))

+

d∑
i=1

δixi(V (x− ei)− V (x))

+

d∑
i=1

λi(V (x+ ei)− V (x))
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LV (x) =

d∑
i=1

δixi(V (x− ei)− V (x))

+

d∑
i=1

λixi(V (x+ ei)− V (x)).

Let Kn = {x ∈ Nd : xi ≥ n for each i}. Then note that
for x ∈ Kn,

LV (x) = V (x)

(
d∑
i=1

δixi(e
−1 − 1) +

d∑
i=1

λi(e− 1)

)

≤

(
min
i
δi(e

−1 − 1)dn+

d∑
i=1

λi(e− 1)

)
V (x)

Hence, by choosing sufficiently large N such that

C = −

(
min
i
δi(e

−1 − 1)dN +
d∑
i=1

λi(e− 1)

)
> 0,

we conclude that (21) holds withD = 2C maxx∈Kc
N
V (x).

This implies that X(t), t ≥ 0, is non-explosive, positive
recurrent and exponential ergodicity by Theorem A. This
implies existence of a unique stationary distribution π.

To show that π has finite mth moment for any m ∈ Nd,
we use (22) below combined with the ergodic theorem
[24]. Let τM = inf{t > 0 : |X(t)| ≥ M}. Then by using
Dynkin’s formula [25, 26] and (21), we have

Ex(V (X(t))) = V (x) + Ex
(∫ t∧τM

0

LV (X(s))ds

)
≤ V (x)− CEx

(∫ t∧τM

0

V (X(s))ds

)
+Dt

= V (x)− CEx
(∫ t

0

V (X(s))1{|X(s)|<M}ds

)
+Dt,

(22)
where Ex denotes the expectation of X(t) with X(0) = x,
and t ∧ τM = min{t, τM}. By rearranging terms in (22)
and dividing by t, C, it follows that

Ex
(

1

t

∫ t

0

V (X(s))1{|X(s)|<M}ds

)
≤ V (x)

Ct
+
D

C
. (23)

Then by the dominant convergence theorem, taking
lim for t→∞ on both sides in (23) gives that

lim
t→∞

Ex
(

1

t

∫ t

0

V (X(s))1{|X(s)|<M}ds

)
=
∑
x∈Nd

V (x)1{|x|<M}π(x) ≤ D

C
.

Then the monotone convergence theorem applies for
M → ∞ to conclude that

∑
x∈Nd V (x)π(x) ≤ D

C . Since

V (x) = e‖x‖1 , any moment of π is finite.

Appendix B. Stationary distribution

Proof of Theorem 3. Under the assumption of equal out-
flow rates, the process X(t) that counts the molecules of
each species is lumpable on the partition {En}n∈N, where

En = {a ∈ N2 :
∑d
i=1 ai = n}.

The lumped process X(t) =
∑d
i=1Xi(t) has Pois-

son stationary distribution ν(n) with intensity (15). As
stated earlier, the stationary distribution Π(a) factorizes
as Π(a) = π(a|n)ν(n). Under the given assumptions on
the parameters, π(a|n) solves the equation, similar to (8),

Rn = Ln−1 + Ln + Ln+1, (24)

where

Rn =π(a|n)

 d∑
i=1

λi + δn+

d∑
i=1

∑
j 6=i

κaiaj


Ln−1 =

δn∑d
i=1 λi

n∑
i=1

π(a− ei|n− 1)λi

Ln =

n∑
i,j=1

π(a− ei + ej |n)κ(ai − 1)(aj + 1)

Ln+1 =

∑n
i=1 λi

(n+ 1)

n∑
i=1

π(a + ei|n+ 1)(ai + 1),

The proof now proceeds by showing that the ansatz
π(·|n) specified by equation (17) solves equation (24).
First we note that if the ansatz is true, then the following
recurrence relations hold

π(a|n) =
1

n+ 1

d∑
i=1

(ai + 1)π(a + ei|n+ 1),

π(a− ei|n− 1) =
ai(n− 1 +

∑d
i=1 αi)

n(ai − 1 + αi)
π(a|n),

π(a− ei + ej |n) =
ai(aj + αj)

(aj + 1)(ai − 1 + αi)
π(a|n).

(25)

Applying (25) and dividing by π(a|n) in (24) we get

δn+

d∑
i=1

∑
j 6=i

κaiaj =
δ(n− 1 +

∑d
i=1 αi)∑d

i=1 λi

d∑
i=1

λiai
ai − 1 + αi

+

d∑
i=1

∑
j 6=i

κai(ai − 1)(aj + αj)

ai − 1 + αi
(26)

By fixing ai = n, the following condition is necessary

δ(n− 1 + αi)

= δ
(
n− 1 +

d∑
i=1

αi

) λi∑d
i=1 λi

+ κ(n− 1)
∑
j 6=i

αj .
(27)
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If we further set n = 1 we get

λi∑d
i=1 λi

=
αi∑d
i=1 αi

. (28)

Moreover if we take equation (27) and sum over all i =
1, · · · , d, we get

(d−1)δ(n−1)+δ

d∑
i=1

αi = δ

d∑
i=1

αi+κ(n−1)(d−1)

d∑
i=1

αi,

which further implies

d∑
i=1

αi =
δ

κ
. (29)

Together with equation (28), this implies

αi =
δλi

κ
∑d
i=1 λi

. (30)

Taking again equation (26), we can further recast it
into the following form

δn =−
d∑
i=1

∑
j 6=i

κaiaj +
δ(n− 1 +

∑d
i=1 αi)∑d

i=1 λi

d∑
i=1

λiai
ai − 1 + αi

+

d∑
i=1

∑
j 6=i

κai(ai − 1 + αi)(aj + αj)

ai − 1 + αi

−
d∑
i=1

∑
j 6=i

κaiαi(aj + αj)

ai − 1 + αi

=
δ(n− 1 +

∑d
i=1 αi)∑d

i=1 λi

d∑
i=1

λiai
ai − 1 + αi

+

+

d∑
i=1

∑
j 6=i

κaiαj −
d∑
i=1

∑
j 6=i

κaiαi(aj + αj)

ai − 1 + αi

=
δ(n− 1 +

∑d
i=1 αi)∑d

i=1 λi

d∑
i=1

λiai
ai − 1 + αi

+

+

d∑
i=1

d∑
j=1

κaiαj −
d∑
i=1

κaiαi

−
d∑
i=1

d∑
j=1

κaiαi(aj + αj)

ai − 1 + αi
+

d∑
i=1

d∑
i=1

κaiαi(ai + αi)

ai − 1 + αi
,

δn =
δ(n− 1 +

∑d
i=1 αi)∑d

i=1 λi

d∑
i=1

λiai
ai − 1 + αi

+

d∑
i=1

d∑
j=1

κaiαj

−
d∑
i=1

κaiαi −
(
n+

d∑
i=1

αi

) d∑
i=1

κaiαi
ai − 1 + αi

+

d∑
i=1

d∑
i=1

κaiαi(ai + αi)

ai − 1 + αi

=
δ(n− 1 +

∑d
i=1 αi)∑d

i=1 λi

d∑
i=1

λiai
ai − 1 + αi

+

d∑
i=1

d∑
j=1

κaiαj

−
d∑
i=1

κaiαi −
(
n+

d∑
i=1

αi

) d∑
i=1

κaiαi
ai − 1 + αi

+

d∑
i=1

d∑
i=1

κaiαi(ai + αi − 1)

ai − 1 + αi

−
d∑
i=1

d∑
i=1

κaiαi
ai − 1 + αi

and, finally,

δn =
δ(n− 1 +

∑d
i=1 αi)∑d

i=1 λi

d∑
i=1

λiai
ai − 1 + αi

(31)

+

d∑
i=1

d∑
j=1

κaiαj −
(
n+

d∑
i=1

αi − 1
) d∑
i=1

κaiαi
ai − 1 + αi

Now, using (29) and (30), we have

d∑
i=1

κai

d∑
j=1

αj = nδ

and

δ∑d
i=1 λi

d∑
i=1

λiai
ai − 1 + αi

=

d∑
i=1

κaiαi
ai − 1 + αi

,

making equation (31) identically satisfied.

Appendix C

Proof of Theorem 4. We first rewrite equation (24),
where the κij are set to zero for all j 6= (i + 1)d and
to a constant value κ otherwise. We get the condition

Rn = Ln−1 + Ln + Ln+1, (32)

where

Rn =π(a|n)

[
d∑
i=1

λi + δn+

d∑
i=1

κaia(i+1)d

]

Ln−1 =
δn∑d
i=1 λi

n∑
i=1

π(a− ei|n− 1)λi
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Ln =

n∑
i=1

π(a− ei + e(i+1)d |n)κ(ai − 1)(a(i+1)d + 1)

Ln+1 =

∑n
i=1 λi

(n+ 1)

n∑
i=1

π(a + ei|n+ 1)(ai + 1).

We now notice that if the uniform ansatz is true, the
following recurrence relations also hold

π(a + ei|n+ 1) =
n+ 1

n+ d
π(a|n)

π(a− ei|n− 1) =
n+ d− 1

n
π(a|n)

Plugging the ansatz (20) and these recurrence relations
into (32), we get that equation (32) holds if and only if

δn+

d∑
i=1

κaia(i+1)d = δ(n+d−1)+

d∑
i=1

κ(ai−1)(a(i+1)d+1).

It simplifies to 0 = δ(d − 1) − κd. Such a condition is
identically satisfied under the hypothesis of the theorem
which guarantees

κ =
d− 1

d
δ.
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