Autosomal dominant polycystic kidney disease (ADPKD) is one of the most widespread genetic disorders affecting the kidney. Nevertheless, there is still no cure for ADPKD. Domain experts test the effectiveness of different treatments by investigating how they can reduce the number and dimension of cysts on kidney tissues. Image processing of the microscope acquisitions is then an expensive but necessary operation currently performed by operators to determine and compare cyst size and quantity. In this work, we propose a deep learning algorithm for fast and accurate cysts detection in sequential 2-D images. Experiments on 507 RGB immunofluorescence images of 8 kidney tubules show that the proposed U-Net-based deep-learning solution can automatically segment images with increasing performance at larger cyst dimensions (Pr > 0.8, Re > 0.75 for cysts larger than 32 µm 2 ). Such a reliable method performing an accurate cyst segmentation can be a valid support for researchers in optimising the effort to find new effective treatments for ADPKD.

Cyst segmentation on kidney tubules by means of U-Net deep-learning models / Monaco, Simone; Bussola, Nicole; Butto, Sara; Sona, Diego; Apiletti, Daniele; Jurman, Giuseppe; Viola, Elisa; Chierici, Marco; Xinaris, Christodoulos; Viola, Vincenzo. - ELETTRONICO. - (2021), pp. 3923-3926. (Intervento presentato al convegno IEEE International Conference on Big Data nel 15-18 Dec. 2021) [10.1109/BigData52589.2021.9671669].

Cyst segmentation on kidney tubules by means of U-Net deep-learning models

Monaco, Simone;Apiletti, Daniele;
2021

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most widespread genetic disorders affecting the kidney. Nevertheless, there is still no cure for ADPKD. Domain experts test the effectiveness of different treatments by investigating how they can reduce the number and dimension of cysts on kidney tissues. Image processing of the microscope acquisitions is then an expensive but necessary operation currently performed by operators to determine and compare cyst size and quantity. In this work, we propose a deep learning algorithm for fast and accurate cysts detection in sequential 2-D images. Experiments on 507 RGB immunofluorescence images of 8 kidney tubules show that the proposed U-Net-based deep-learning solution can automatically segment images with increasing performance at larger cyst dimensions (Pr > 0.8, Re > 0.75 for cysts larger than 32 µm 2 ). Such a reliable method performing an accurate cyst segmentation can be a valid support for researchers in optimising the effort to find new effective treatments for ADPKD.
2021
978-1-6654-3902-2
File in questo prodotto:
File Dimensione Formato  
Cyst_segmentation_on_kidney_tubules_by_means_of_U-Net_deep-learning_models.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2951114