We propose a machine learning-based technique that accurately estimates quality-of-transmission (QoT) impairments of an optical switch on 400ZR. The proposed scheme works in an entirely agnostic way reduces inaccuracy in QoT impairments estimation by 1.5 dB.
Machine learning Assisted Accurate Estimation of QoT Impairments of Photonics Switching System on 400ZR / Khan, Ihtesham; Tunesi, Lorenzo; Masood, Muhammad Umar; Ghillino, Enrico; Bardella, Paolo; Carena, Andrea; Curri, Vittorio.. - ELETTRONICO. - (2021). ((Intervento presentato al convegno Asia Communications and Photonics tenutosi a Shanghai, China nel 24–27 October 2021 [10.1364/ACPC.2021.T2B.2].
Titolo: | Machine learning Assisted Accurate Estimation of QoT Impairments of Photonics Switching System on 400ZR | |
Autori: | ||
Data di pubblicazione: | 2021 | |
Abstract: | We propose a machine learning-based technique that accurately estimates quality-of-transmission (...QoT) impairments of an optical switch on 400ZR. The proposed scheme works in an entirely agnostic way reduces inaccuracy in QoT impairments estimation by 1.5 dB. | |
ISBN: | 978-1-957171-00-5 | |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
ACPC-2021-T2B.2.pdf | 2a Post-print versione editoriale / Version of Record | Non Pubblico - Accesso privato/ristretto | Administrator Richiedi una copia | |
C_ACP_Rejected_C_ECOC_Machine_learning_Assisted_Accurate_Estimation_of_QoT_Impairments_of_Photonics_Switching_System_on_400ZR_V1_19072021 (3).pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Embargo: 27/10/2022 Richiedi una copia |
http://hdl.handle.net/11583/2949516