In a recent work by A. Martini and A. Sikora, sharp Lp spectral multiplier theorems for the Grushin operators acting on Rd1x× Rd2x and defined by the formula are obtained in the case d1 ≥d2. Here we complete the picture by proving sharp results in the case d1 < d2. Our approach exploits L2 weighted estimates with -gextra weights-h depending essentially on the second factor of Rd1-Rd2 (in contrast to the mentioned work, where the -gextra weights'h depend only on the first factor) and gives a new unified proof of the sharp results without restrictions on the dimensions.
A sharp multiplier theorem for Grushin operators in arbitrary dimensions / Martini, A.; Muller, D.. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - STAMPA. - 30:4(2014), pp. 1265-1280. [10.4171/rmi/814]
A sharp multiplier theorem for Grushin operators in arbitrary dimensions
Martini A.;
2014
Abstract
In a recent work by A. Martini and A. Sikora, sharp Lp spectral multiplier theorems for the Grushin operators acting on Rd1x× Rd2x and defined by the formula are obtained in the case d1 ≥d2. Here we complete the picture by proving sharp results in the case d1 < d2. Our approach exploits L2 weighted estimates with -gextra weights-h depending essentially on the second factor of Rd1-Rd2 (in contrast to the mentioned work, where the -gextra weights'h depend only on the first factor) and gives a new unified proof of the sharp results without restrictions on the dimensions.File | Dimensione | Formato | |
---|---|---|---|
RMI-2014-030-004-06.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
250.82 kB
Formato
Adobe PDF
|
250.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
martinimueller_grushin.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
245.36 kB
Formato
Adobe PDF
|
245.36 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2949512