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A sharp multiplier theorem for Grushin operators
in arbitrary dimensions

Alessio Martini and Detlef Miiller

Abstract. In arecent work by A. Martini and A. Sikora, sharp L? spectral
multiplier theorems for the Grushin operators acting on Ri} X RZ?, and
defined by the formula

dy dy do
2 72 2
J=1 =1 k=1

are obtained in the case d; > d2. Here we complete the picture by proving
sharp results in the case di < dz. Our approach exploits L? weighted
estimates with “extra weights” depending essentially on the second factor
of R" x R¥ (in contrast with the mentioned work, where the “extra
weights” depend only on the first factor) and gives a new unified proof of
the sharp results without restrictions on the dimensions.

1. Introduction

Let X be R% x R% with Lebesgue measure, and let L be the Grushin operator on
X, that is,
L= -0y —|2'|?Aur,

where 2/, 2" denote the two components of a point z € R4 x R% while Ay, Agr
are the corresponding partial Laplacians, and |2'| is the Euclidean norm of z’.
Since L is an essentially self-adjoint operator on L?(X), a functional calculus for L
can be defined via spectral integration and, for all Borel functions F' : R — C, the
operator F(L) is bounded on L?(X) if and only if the function F, which is called
spectral multiplier, is essentially bounded with respect to the spectral measure.
The aim of this work is to give sufficient conditions for the LP-boundedness (for
p # 2) of an operator of the form F(L), in terms of smoothness properties of the
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means, singular integral operators.



2 A. MARTINI AND D. MULLER

multiplier F. Namely, let W35 (R) denote the L? Sobolev space on R of (fractional)
order s, and define a “scale-invariant local Sobolev norm” by the formula

| F'||arws = sup || Fellws
t>0

where Fiy)(A) = F(tA), and n € C(]0,00]) is a nontrivial auxiliary function
(different choices of 7 give rise to equivalent local norms). Our main results then
read as follows.

Theorem 1. Suppose that a function F : R — C satisfies
[E | arwg < o0

for some s > (dy + d2)/2. Then the operator F(L) is of weak type (1,1) and
bounded on LP(X) for all p € ]1,00[. In addition, for all p € |1, 00],

IEL[ 1w e < CllFllaws,  IF(D)zr—re < Cp sl Fllarws; -

Theorem 2. Suppose that k > (dy +da—1)/2 and p € [1,00]. Then the Bochner-
Riesz means (1 —tL) are bounded on LP(X) uniformly in t € [0, 00

These results are sharp, in the sense that the lower bounds on the order of
differentiability s in Theorem 1 and on the order s of the Bochner-Riesz means in
Theorem 2 cannot be decreased.

In the case di > ds, the results above are contained in a joint work of the
first-named author and Adam Sikora [10], to which we refer for a discussion of the
related literature (see also [5, 11, 1, 6, 13, 7, 14, 2, 4, 12, 15, 8]), and for a proof of
the mentioned sharpness (based on [9]). In fact, [10] contains some results for the
case di < ds too, which however are not sharp. The new approach presented here
differs from the one of [10] even in the case d; > da, and gives a unified treatment
of the sharp results without any restriction on the pair (dy, ds).

2. Structure of the proof

Let o be the control distance on X associated to the Grushin operator L, and
denote by B(z,r) the open g-ball of center x and radius r, and by |B(x,r)]| its
Lebesgue measure. Denote moreover by Kp(r) the integral kernel of the operator
F(L). As shown in [10], Theorems 1 and 2 are consequences of the following L*
weighted estimate (corresponding to [10, Corollary 14] in the case d; < ds).

Proposition 3. For all R >0, a >0, 8> a+ (d + d2)/2, and for all functions
F :R — C such that supp F' C [R2,4R2} ,

(2.1) esssup [[(1 -+ Ro(-,9))" Kr) (59l < Cosll Firn lwy -
Yy
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This estimate in turn follows via Hélder’s inequality from an L? weighted esti-
mate of the form
(2.2)

esssup | B(y, 1RV |wr(z,y)" (1 + Ro(,9)* Krer)(59)ll2 < Ca,pir | Fie) s
yeE

for suitable weight functions wg : X x X — [0,00[ and constraints on «, 3,7 €
[0, oo

In [10] the weights wg(z,y) depend only on the first components a’,y" of z, v,
and the proof of (2.2) is based on a subelliptic estimate satisfied by L. Such ap-
proach corresponds to the one adopted in [6] for the sublaplacian on a Heisenberg(-
type) group G, where a weight function is used, that depends only on (the projec-
tion of the variable on) the first layer of G.

On the other hand, other works in the setting of Heisenberg groups [13, 14]
exploit weight functions depending on both layers.

The approach presented below differs from all the previous ones, since we use
weight functions wg depending only on the second components 2’3" of the vari-
ables x,y (except for a rescaling factor due to the dependence of the volume of a
ball of fixed radius on the center). In place of the subelliptic estimate used in [10],
here we perform a careful analysis based on the properties of the Hermite func-
tions; in this sense, we are closer to the spirit of [13, 14], where instead identities
for Laguerre functions are exploited.

We remark that the L? estimate (2.2) without the weights wg (that is, when
v = 0) holds true if 3 > «a, and this implies the L! estimate (2.1) when 8 > a+Q/2,
where @ is the “homogeneous dimension” d; 4+ 2dy of the doubling space X with
distance ¢ and Lebesgue measure [3, 15]. The purpose of the “extra weights”
wpg is to pass from the homogeneous dimension @ to the topological dimension
dy 4 ds. Since these two quantities differ by the dimension dsy of the second factor
of R4 x R% | it appears necessary, when dy is larger than d;, to employ weights
wr(z,y) depending not only on the first components z’,3/. In fact the technique
presented here, in contrast to the one in [10], does not put any constraint on the
dimensions.

3. Weighted estimates and discrete differentiation

Given a point x = (z/,2”) € X, we denote by z and z} the j-th component of 2’
and the k-th component of 2”. For all j € {1,...,di}, k € {1,...,da}, let then L;
and T} be the differential operators on X given by

da
Ly = (=i )* + ()7 Y (—i0ey)?, Ty, = —i0y.

1=1
If (D, )r>o is the family of dilations on X defined by

D,(z',2") = (ra’,r?z"),
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then
L;(foDy)=1*(L;f)o D, Ty(f o D) = 1*(Ti.f) o Dy.

The Grushin operator L on X is the sum Ly +---+ Lg, .

As shown in [10], the operators Lq,..., Lq,,T1,..., Ty, have a joint functional
calculus; moreover, if L and T denote the “vectors of operators” (Li,...,Lq,)
and (T1,...,Ty,), one can obtain a quite explicit formula for the integral kernel
Ka,T) of an operator G(L, T) in the functional calculus, in terms of the Hermite
functions. Namely, for all £ € N, let hy denote the /-th Hermite function, that is,

14
he(t) = (~1) (012 /) /2 (jt)

and set, for all n € N,y € R% | € € R%,
R (4, €) = €1y (1€ 2un) -+ - B, (1€ uay).-

Finally, denote by ei,...,eq, the standard basis vectors of R% and by 1 the
element (1,...,1) =e; +--- +eq, of N9,

Proposition 4. For all bounded Borel functions G : R% x R% — C compactly
supported in RN x (R \ {0}), if

(3.1)

m(n, &) = G(|€|(2n +1),€)  when n € N4,
o when n € Z% \ N9,

then

(32) Kewm(z,y) = (2m) % /R D &) ha(y € ha (o) €SV dg

neNd1

for almost all z,y € X.

Proof. See [10, Proposition 5]. O

The relation (3.2) between the kernel K¢ g, ) and the multiplier G — or rather
its reparametrization m — involves a partial Fourier transform. This suggests that
applying a suitable multiplication operator to the kernel may correspond to apply-
ing a differential operator to the multiplier. The presence of the Hermite expansion,
however, make things more complicated, and leads one to considering discrete dif-
ference operators as well as continuous derivatives on the spectral side. In order
to give a precise form to these observations, we introduce a certain amount of
notation.
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For all £ € Z, set ap = \/¢(¢{ — 1) if £ > 0 and ay = 0 otherwise. Let us define
the following operators on functions f : Z% x R% — C:

ij(nv 6) = f(n+ 26j7€)a
9;f(n, &) = f(n,§) — f(n —2e;,8),

. _ anj+2pf(n7 f) if s = 0,
Nj’p’Sf(n’ 5) B {Njyp,s—lf(n7£) - Nj,p—l,s—lf(n,f) if s >0,
0f(1.€) = o F(0.9),

for all j € {1,...,di}, k € {1,...,d2}, p € Z, s € N. Note that 7; is invertible,
and 6;f = f — ijl f. We will also use the multiindex notation as follows:

(0%

T Xdy
T =70

Ty, 5&:531...52‘?’ aﬁzﬁfl...a§j2,

for all @ € N% and 8 € N%; in fact, 7% is defined for all o € Z% . Inequalities be-
tween multiindices, such as a < o/, shall be understood componentwise. Moreover
| - |1 will denote the 1-norm, that is, for all ¢t € RY, |ty = [t1| +--- + |ta].

For convenience, set hy = 0 for all £ < 0, and extend the definition of h,, to all
n € Z%; hence h,, = 0 for all n € Z% \ N,

Proposition 5. Let G : R x R% — C be smooth and compactly supported in
R4 x (R \ {0}), and let m(n, &) be defined by (3.1). For all B € N, we have

(x” - y/')ﬂ ICG(L,T)(zy Y)

- /Rd Z Z @L(g) aIBLM T&L 50¢Lm(n’ 6) ?ln-‘rZW (y/7 E) iln(zla 6) ei<5v“"”*y"> df

nezZd Elg

for almost all x,y € X, where I3 is a finite set and, for all v € Ig,
(i) B* € N¥= and B < B,

(i) ot &t € N and |at|y + |81 < |81,

(iii) if |81 > 0 then |at|; + |61 > 0,

(iv) r* € Z% and |r*|y < |B1,

(v) ©, is a smooth function on R\ {0}, homogeneous of degree |B*|1 — |B|1,
(vi) N, is a composition product of the form

(3.3) Nigptst o Nipy sy Ny o oo Ny o o

di,pit,s; d17pud1 Sug,

with uy + - +uq, < |B)1— 1|61 and
sitotsh, =ui—ah, sl =Bl < pf <16l
max{(),lfp]l,...,lfpij}Za;f&

J
forall je{l,....di} andl € {1,... u;}.
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Proof. Because of (3.2), we are reduced to proving that

o\” - -
(5) 3 mnm( 9o
(3.4) n€zd1 i i
=3 > 0 ITN, 6% m(n, &) hore (¥, €) hn (2, €)

L€l nezd1

where Ig, 8, o, &*, r*, ©,, N, are as in the statement above.

This formula can be proved by induction on |3];. For |5]|; = 0 it is trivially ver-
ified. For the inductive step, from well-known properties of the Hermite functions
[16, p. 2] we deduce

2thy(t) = ashe—2(t) — arr2her2(t) — he(t)
for all # € Z and t € R. Correspondingly, for all n,r € Z%, 2’y € R% and
€ e R\ {0},

Ek

9 1 S .
87 |:hn+2r(y >€) hn(aj 75)] 4|§|2 Z[an]+2r]hn+2(r e])(y 5) h ( g)

k
- an_7+2(r_7+1)hn+2(r+e_j)(y 75) Bn (il?l, 6)
+ anj Bn+2r(y/a 5) hn72e]- (-Tlv é-)
- an_7+2ﬁn+2r(y/a 5) ﬁn+28j (x/a f):| .

Hence, for all smooth f : Z% x R% — C compactly supported in Z% x (R%\ {0}),

g > 0,6 o (6 hn',) = 3 [0 (18) B (0, €)

nezd1 nezZ

4|£|2 ZN,l 07—35 f( 6) n+2(r+ej)(y §>

(rj)+
(35) 4|€|2 Z €r; Z Nj,p+1,1f(n,§) hn+2(r+e,~)(y/a£)
p=1—(r;)-
(r5) +

4|§|2 Z ETJ Z Njpaf(n,€) Bn+2(r—e_7)(y/7 £)
;)

4|€|2 ZNJO()(; f(n 5) n+2(r— ej)(y §|h ( ,€),

where, for all £ € Z,

1 it 0> 0,
€ = {_1 £0<0 and (£)+ = max{+(,0}.
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By taking the derivative 9/9¢ of both sides of (3.4), applying (3.5) to each sum-
mand in the right-hand side, and exploiting the “commutation relations”

Y sTj f:l7 N, s N, 36', f:l7
TiNips = L,p+1,5T5 1 J 5le,p,s _ Lps+1 T N p—1,505 1 ]
Nl,p»sTj lf,] 7é l7 Nl,p,sfsj, 1f] 7& l,

one obtains the analogue of (3.4) where § is increased by 1 in the k-th component.
O

Plancherel’s formula, together with the orthonormality of the Hermite functions
and the finiteness of the index set I3, then yields the following estimate.

Corollary 6. Under the hypotheses of Proposition 5, for all 3 € N% and almost
ally € X,

2
(3.6) /‘(37//—9”)5 ’CG(L,T)(%Q)‘ dx
X

<o ¥ X

neNd1 elg

L . 2 .
Nr® 6% 0% m(n, )| hyy o (y',€) dE-

4. From discrete to continuous

The next few lemmata will be of use in clarifying the meaning of the various terms
appearing in the right-hand side of (3.6).

Note that for all £ € R%, 7;£(-,€), 6, f(-,€), Nj ».sf(,€) depend only on f(-,£).
In other words, the operators 7;, d;, N; , s and their compositions can be considered
as operators on functions Z4 — C.

Lemma 7. Let f : Z% — C have a smooth extension f : R — C, and let
a e NU & eZh; then

786% f(n) = 2ok / 0*f(n — 5) dva,a(s)
J,

o, &

for all n € Z%, where J, 5 = H?;l [—2d;, 20 — 2&;] and vq,4 is a Borel proba-

bility measure on Jo.5. In particular

[788° f(n)? < 2%1°h / 0% f(n = )| dva,a(s)

Ja,d

and i )
[7%6%f(n)] < 21° sup [0 f(n — s)|

s€Ja,a

for allm € Z%.
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Proof. Tterated application of the fundamental theorem of integral calculus gives

5 f(m) =20 |

o “/[0 o aaf(nl = 2I81|1y - snay, — 2[8a, 1) ds1 ... dsq,
s @ s 1

and the conclusion follows by taking as v, s the push-forward of the uniform
distribution on H;llzl [0,1]% via the map (s1,...,8a,) — (2]s1]1—2d1,...,2[s4, |1 —
2da4, ), and by Holder’s inequality. O

Lemma 8. Let N be the product (3.3), and let f : Z% — C. Then

1. Nf(n) = 0 for all n € Z such that nj; < 2max{—o0,1 — p},...,1— p{”}
for at least one j € {1,...,d1}, and ‘

2. [NF(m)] < Calf )| T, @Ing] + 1)~ for alin € 24

Proof. Tt is sufficient to prove the conclusion in the case where the product N is
made of a single factor N; , .

Nj p,s is a multiplication operator, with multiplier 77 d%w;, where w;(n) = an,.
Since a; = 0 when £ < 2, inductively we obtain 77d%w;(n) = 65w(n + 2pe;) = 0
when n; < 2(1 — p), and part (1) follows.

The function w; : Z% — C can be extended to a smooth function @; : R% — C
such that w;(t) = \/t;(t; — 1) if t; > 3/2, say, and w(t) = 0 if t; < 1. By Leibniz’
rule, if t; > 3/2, then

S ~ 2—v —(s—wv
O3(t) = D oty * 0 (t; — 1Y)
v=0

for some constants c;, € R, and in particular [9;w(t)| < C’st}_s if t; > 3/2.
Lemma 7 then gives that

|dejwj(n)| <Cs sup (n;+ 9)' s < C,p s(2|nj] + 1t=s
2p—2s<0<2p

for all n with n; > 2(1—p+s). Possibly by increasing the constant, the inequality
(TP 65w(n)| < C,s(2n| +1)'~* extends to all n € Z% | and part (2) follows. O

For all d € N\ {0}, £ € N, u € R?, set

Hag(u) = > b2 (ur)---h, (uq).

neN?
Infi=¢

For the reader’s convenience, we rewrite here the known bounds for the functions
Hy s that will be used in the following (see [10, Lemma 8] and references therein).

Lemma 9. Let d € N\ {0} and set [{] =20+ d. If d =1 then, for all ¢ € N,

(4.1) Hy(u) < {C([g]1/3 + |“2 - [€]|)_1/2 for allu e R,

C exp(—cu?) when u? > 2[f].
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If d > 2 then, for all ¢ € N,

Cy[04/2-1 for all u € R4,
(4.2) Hy(u) < 1 ) )

Cyexp(—cqluls,) when |u|Z, > 2[4],
where |u|oo = max{|u1,..., |uql}-

The following lemma is a refined version of [10, Lemma 9].

Lemma 10. Let d € N\ {0} and set [{] = 20+ d. Let (by)een be a sequence in
10, 00| such that, for some k € [1,00],

KE<b /] < K
for all ¢ € N. In the case d = 1, suppose further that

|be — [0)] < K[*/?
for all ¢ € N. Then, for all x € ]0,00[ and u € R?,
(43) 3 Haolb;u) < Cus {x

= exp(—ul?/(can®)) if lu| > can
(] <a

d/2 m any case,

for some cq,; € [1,00].

Proof. We may assume that x > 1, otherwise the left-hand side of (4.3) vanishes.
In order to exploit the bounds (4.1) and (4.2), we consider several cases.
First of all, in the case |u|oo > 2V/2k, if [{] < x, then by < Kz, hence

by 22, > Jul? (k) > 22 > 2[4),
and therefore
> Hau(b b, ?u) < Cyw exp(—calul® / (5z))

(4.4) W<z
< Cy exp(—cd|u|§0/(2lm)) sup(t exp(—cqt)).
t>1

Thus the second inequality in (4.3) is proved (by a suitable choice of ¢q ).
In the case d > 1, the first inequality in (4.3) is immediately proved because

ST Halb,Pu) < Ca Y [0 < Cpa?l?
<z [<z
In the case d = 1, instead, we need to split the sum in (4.3) in several parts:

Smatt- T o+ T+ %

[(<z [(<z = (<o
[O<lul/v2R  |ul/vVER<[(<|ulVZr (0> [ulv2R
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The first and the last part are the easiest to control. In fact, the part where
[(] < |u|/v2k is controlled by a constant because of (4.4). Moreover, in the part
where |u|v2k < [¢] < x, we have u?/b, < [£]/2, hence

Z H1,e(b[1/2u) <C Z [Z]_l/Q < C 212,
lu|lvV2r<[f] <z [[]<=z

The middle part instead requires a further splitting:

> o= > X )

[(]<z U<z <z <z
lul/V2r<[<|ulvZr  |ul/vV2r<[] lul/vV2r<[f]<|u|v2k [ul+x[02/2<[0]
< lul—s[0?/®  Jul-x[0*/ <[ <|ul+x[]*/? (< |ulv2k

In the part where |u|/v/2r < [{] < |u| — k[]*/3, we have |u| > 1+ x and

[ <lul =1, be<lul,  1/V2r<[l/|u] <1,

o)z (1-12).

so this part of the sum is majorized by

21/2 w -1/2 1
Cy T > (1 — |) < C, x1/2/ (1—t)"Y%at,
U ) vaR << ul —wig2s " V2R

hence

and the last integral is finite.
In the part where |u| + s[(]%/3 < [¢] < |u|v/2k, we have |u| > 1/v/2k and

> ul+1,  be>lul, 1<[f/|ul < V25,

hence

a'/? [4] e 1/2 var 1/2
ct H_ <C t—1)"Y2a,
] ) <|u| ) =cr / =1

|ul-+R[012/3<[0)<|ulv/2R

and the last integral is finite.

In the part where |u|/v/2k < [(] < |u|v/2k and |u| — &[€]?/% < [{] < |u| + K[€]*/3
there are at most £(2r)"/?|u|?/? summands, and moreover |u| < zv/2x, hence this
part of the sum is majorized by

C,{|’U4|2/3|’U4|_1/6 <O, $1/2,

and we are done. O
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We may now give a more explicit form to the right-hand side of (3.6), in terms
of a Sobolev norm of the multiplier, in the case we restrict to the functional calculus
for the Grushin operator L alone. In order to avoid divergent series, however, it is
convenient at first to truncate the multiplier along the spectrum of T.

Lemma 11. Let x € C2°(]0, 00]) be such that supp x C [1/2,2]. Let F : R — C be
smooth and such that supp f C K for some compact K C |0,00[. For allr € [0, 0]
and M € [1,00[, if Fas : R x R — C is defined by

Fyv(A€) = F(A) x(A/ (MIE])),

then

- 2
/X ||37N - y”| /CFM(L,T) (x,y)| dx
< Crurr M (Xo.cre, ) (W/1/M) + 1) [Py
for almost all y € X.

Proof. Without loss of generality, we can restrict to the case r € N, the remaining
values of 7 being recovered by interpolation. It is then sufficient to prove

/| K:FM LT)(J: y)‘ dx
< Crae s M (o i (1 /M) + W) IFJ2

for all 3 € N2 and almost all y € X.

Set (t) = |2t + 1|y = 2|t|; + dy for all t € R%. An estimate for the left-
hand side of the previous inequality is given by Corollary 6, by taking m(n,§) =
F(|€[{n)) x({n) /M) for n € N4 and m(n, &) = 0 for n € Z% \ N%1. This estimate,
combined with Lemma 8, gives

/ |2 P Krwwm ()] *de < oF Z/ Z |¢[218 i =2181

L€lg n>vyt

L L ~L L L 2 ~
X (2%1 + 1)2a1 e (2nd1 + 1)204,11 T 6 85 m(n,f)‘ thJrZrL (ylvf) dga

where 7 1= (74,...,7,) and 7} = 2max{0,1—pJ, ... 1—p7 } > 2(aj —af) for

all 7 € {1,...,dy}. If m is a smooth extension of m, then Lemma 7 gives
I = Krym@ ) < ey 3 [ ] 5 e
L€l Rd2 n>'y
< ()2 o o mn — 5,6)|” R/, €) de du (s),
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where 7 = (31,...,74,), 75 = max{0,7% + 2r5} > 2(r% — aj + af) for all
jefl, . di}, Jo= 10, [20r5 — %), 2(rt — &% + b)), and v, is a probability
measure on J,. Note that all the components of the first argument n — s of m in
the right-hand side of the previous inequality are always nonnegative, since n > 4*
and s € J,.

A smooth extension m of m is given by
m(t, &) = F(I§](2t1 + - + 2ta, +d1)) x((2t1 + -+ - + 2ta, +d1)/M)

for ¢ € R%\ {0} and ¢ € ]-1/2,00[**. An inductive argument then shows that

of ot ) = Y Mol hm e () AN e, (€) (HPFET (€ (1))
=

for all ¢t € [0,00[", where the Upeap : RT\ {0} — C are smooth functions,
homogeneous of degree a + b — |8*];. Hence

[t 148" |1
07 0 m(t, )P < Cy Y (€ THF MR PO (1€ (8)) X((8) /M)

v=0

for all ¢ € [0, 00", where ¥ is the characteristic function of [1/2,2]; therefore, since
lat]y + |81 < |81 for all ¢ € Ig, we have

|B]1
2
/X |(CL‘H - y//)ﬂ K:FM(L,T)(J;= y)‘ dr < CXﬁ Z M2v

v=0
X Z Z /JL /Rd2 |€|2v—2\5|1 |F(v)(‘§|<n _ 8>)|2 ﬁi(y’,&) ddeL(S),

L€lp n>%"
e, '<(n)/M<e,

where ¢, € [2,00] is chosen so that 2/¢, < (n)/(n —s) < ¢,/2 for all n > 4" and
sEJ,.

Ik =3+ +7,, J, is the interval in R which is the image of .J, via the
map (S1,...,84,) — S1+ -+ + 84, and v, is the corresponding push-forward of v,
on jL, then k, > max jL and

1811
/ (" —y")’ Ky (e, ?/)‘2 de<Cyp) >, >, M»
X v=0.€1g >k,

e <[ /M<e,

[ EO - )Y R € dedi o),

n:|n|1=~
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where [(] = 2¢+ d;. Note that >, |, _, R2(y' &) = |€|M/2Hy, o(|€]?y), and
that the integrand in ¢ € R% depends only on ||, hence

|B]1

/x @ = y") Kryam(@y)| de<Cusd > > M*

v=0.€1g >k,
Crlé[e]/MSCL

> / / )\2v72\5\1+d1/2+d2|F(v)()\[£ _ S])|2 Hdl,é()\l/zy/) %dﬁb(s)
J, JO

Note that [¢ — s] ~ [(] ~ M in the domain of summation/integration in the right-
hand side; a rescaling in the integral in A, together with the fact that supp FF C K
and K C 0, 00[ is compact then gives

|B]1

2 i
[ =0 Kpamfen)f do< s 33 [ IFOWP
X v=0.€14"0
)\1/2y/
218]1 —da—di /2 -
« M2IBli—d2—d: /j Z Hg, <[€_ 3]1/2) dv,(s) dA.

>k,
el <[] /M<e,

On the other hand, from Lemma 10 we easily obtain

3 /\1/2y/ o
LS D (V_S]l/z> < Cic (Xoewe (W/1/M) + 7).

>k,
e, '<[/M<e,

uniformly in ¢ € Ig, s € J,, A € K, by choosing ck,p sufficiently large, and we are
done. O

Define the weight w : X x X — [1, 00 by

|I”*y"|
winy) =14 T

Proposition 12. Let F': R — C be smooth and such that supp F C K for some
compact K C |0,00[. For all r € [0,d2/2[, we have

2
esses;lp|B(y, 1) /X |w(m,y)’“ ICF(L)(x,y)| dx < CK’THFH%,V;.
y

Proof. Take y € C2°(]0,00[) such that supp x C [1/2,2] and Y, o, x(27%¢) = 1 for
all t €10, 00[. If Fyy is defined for all M € [1,00] as in Lemma 11, then

F(L) =) Fy(L,T)

keN
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(with convergence in the strong sense). Hence an estimate for K F(L) can be ob-
tained, via Minkowski’s inequality, by summing the corresponding estimates for
Kr,, (L, T) given by Lemma 11. On the other hand, since [B(y, 1)| ~ max{1, |y |}
[10, Proposition 3], it is easily checked that

> 20 (e (276 D) + V) < Crma{1, [y}
keN

(1+y'])"
< COpp—21
= R B(y, )12

when r € [0,d3/2], therefore from Lemma 11 we obtain that

‘.’E”— //| r
sl [ |(B2]) ke

The conclusion follows by combining the last inequality with the corresponding
one for r = 0. O

2
dz < Cic, | Flfys-

5. The multiplier theorems
Now we need some properties of the weight w.
Lemma 13. For all z,y € X,
w(z,y) < C(1+ o(z,y))*
Moreover, if a,r € [0, 00] satisfy
r<dy/2, a+2r > (dy +2ds)/2,

then, for all y € X,
/X w(t,y) " (1+ o(z,y) > dx < Ca,|B(y,1)].

Proof. Recall that o(z,y) ~ min{ o (z,y), 02(x,y)}, where

| "_ y//|
(51) Ql(xvy): |1'/*y/|+|l’//*y”|1/2, QQ(xay) = |l‘/*y/‘+77
EAR

while | B(y, 1)| ~ max{1, |y'|}%2 [10, Proposition 3]. The conclusion will then follow
by proving that

(5.2) w(z,y) < C(1+ oi(z,y))?,

(5-3) /Xw(x,y)*% (1+ 0i(z,y)) "> dx < Cor (1 + [y ).
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fori=1,2.
As for (5.2), when i =1,

w(z,y) < (1+[2" —y"|'?)* < (1+ o1 (2,))*.
whereas, when ¢ = 2,

2" —y"| [ + Y]

<1+ 0o(z,y) 2+ 2" —y'|) < (14 02(z,9))>

w(r,y) =1+

About (5.3), in the case i = 1, since a > dy/2 + (dg — 2r), we can decompose
a=da +a’ sothat o > d;/2>0and @” > dy — 2r > 0, and therefore

[ 0+ et i
X

|m”| >2T \y—2a’ "y —a'’
< 14+ — 1+ |z (14 |z < dx
<[ (1) e ae e

<(1+ Iy’l)zr/ (1+J2/)72 (1 + [27)) 7" da
X

the last integral is finite since 2o’ > d; and 2r + o’ > do, and moreover 2r < ds.

In the case i = 2, instead, since aw — dy /2 > dy — 2r, we can choose «” so that
20" € Jds — 2r,a — dq/2[; in particular 0 < o’ < a/2, hence o' = a—a” > a/2 >
0. Then

/%wmyr%w1+gxay»*de
X
| 7 2a | et
< Cur 1+ 1+ |x o 1+ —— dx
- ’¢A< Teyy) (kD ErIE

-c /<1+ |$/| >20// <1+ |$H| >—2r—2au (1+‘ml‘)_2a/dx
-k 1+ [y/] 1+ [y

Since 2a’' + 2r > ds, the integral in 2’/ converges, and moreover 2o’ > 0, hence
the denominator 1+ |y'| in the first factor can be discarded, and we obtain

/w(m,y)fw (1+92($’y))72a dr < Ca,r(1+|y’|)d2 /d (1+|x'|)72"/+2°‘” de’.
X R41

Since 20/ — 20" = 2(av — 2a") > dy, the integral in 2’ converges too, and we are
done. O

Via interpolation, we are now able to give a strengthened version of the stan-
dard weighted L? estimate due to the Gaussian heat kernel bounds for L (see [10,
Proposition 11] and references therein).
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Proposition 14. Let o, 3,7 € [0,00[ be such that r < do/2 and B > o+ r. Let
K C]0,00] be compact. For all smooth F : R — C with supp F C K, we have

ess sup By, DIV [Jw(,9)" (1+ 0l 9)* Keeny (59|, do < Crapll Fllyys-
Proof. For « = 0 and 8 > r, the inequality is given by Proposition 12.

On the other hand, for arbitrary «, if 8 > « + 2r + 1/2, then the inequality
follows from Lemma 13 and [10, Proposition 11].

The full range 8 > a+r is then recovered by interpolation (cf. [11, Lemma 1.2]
and [10, Proposition 13]). O

We are finally able to prove the fundamental estimate, and consequently our
theorems.

Proof of Proposition 3. Since the operator L and the distance ¢ are homogeneous
with respect to the dilations D,., it is not restrictive to assume that R = 1.
Let 7, o’ € [0,00[. For all y € X, Hélder’s inequality gives

1/2
11+ () Kpa)(y)lh < (/Xw(axy)” (1+ o(a,y)) > dx) /
x - y)" (L4 oCy) ™ Kee ()l
The first factor on the right-hand side can be controlled by Lemma 13 if
r < dy/2, o +2r > (d + 2d2) /2,
while the second factor can be controlled by Proposition 14 if moreover
B>a+a +r.

Under our hypotheses, € := 8 — a — (d1 + d2)/2 > 0; therefore, if we choose
r €lde/2 —e,do/2[and o/ € |d1/2 + dy — 2r, 8 — a — r[, then the above conditions
are satisfied, and we are done. |
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