This paper presents a novel theoretical formulation and an associated algorithm for the computation of passive parameterized macromodels from tabulated scattering data. The main contribution is the construction of passivity constraints for parameterized models as a finite set of linear matrix inequalities, thanks to a suitable expansion into Bernstein polynomials. These constraints are embedded in the model identification process, leading to a convex formulation of passivity enforcement, with guaranteed convergence and without requiring any expensive multivariate passivity check. Two numerical examples demonstrate the effectiveness of the proposed approach.
Bivariate Macromodeling with Passivity Constraints / Bradde, Tommaso; Zanco, Alessandro; Grivet-Talocia, Stefano. - ELETTRONICO. - (2021), pp. 1-3. (Intervento presentato al convegno 2021 IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS) tenutosi a Austin, TX, USA nel 17-20 Oct. 2021) [10.1109/EPEPS51341.2021.9609137].
Bivariate Macromodeling with Passivity Constraints
Bradde, Tommaso;Zanco, Alessandro;Grivet-Talocia, Stefano
2021
Abstract
This paper presents a novel theoretical formulation and an associated algorithm for the computation of passive parameterized macromodels from tabulated scattering data. The main contribution is the construction of passivity constraints for parameterized models as a finite set of linear matrix inequalities, thanks to a suitable expansion into Bernstein polynomials. These constraints are embedded in the model identification process, leading to a convex formulation of passivity enforcement, with guaranteed convergence and without requiring any expensive multivariate passivity check. Two numerical examples demonstrate the effectiveness of the proposed approach.File | Dimensione | Formato | |
---|---|---|---|
cnf-2021-epeps-bernstein.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
6.1 MB
Formato
Adobe PDF
|
6.1 MB | Adobe PDF | Visualizza/Apri |
cnf-2021-epeps-bernstein-ieee-compressed.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
7.55 MB
Formato
Adobe PDF
|
7.55 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2947705