This paper presents a novel theoretical formulation and an associated algorithm for the computation of passive parameterized macromodels from tabulated scattering data. The main contribution is the construction of passivity constraints for parameterized models as a finite set of linear matrix inequalities, thanks to a suitable expansion into Bernstein polynomials. These constraints are embedded in the model identification process, leading to a convex formulation of passivity enforcement, with guaranteed convergence and without requiring any expensive multivariate passivity check. Two numerical examples demonstrate the effectiveness of the proposed approach.

Bivariate Macromodeling with Passivity Constraints / Bradde, Tommaso; Zanco, Alessandro; Grivet-Talocia, Stefano. - ELETTRONICO. - (2021), pp. 1-3. (Intervento presentato al convegno 2021 IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS) tenutosi a Austin, TX, USA nel 17-20 Oct. 2021) [10.1109/EPEPS51341.2021.9609137].

Bivariate Macromodeling with Passivity Constraints

Bradde, Tommaso;Zanco, Alessandro;Grivet-Talocia, Stefano
2021

Abstract

This paper presents a novel theoretical formulation and an associated algorithm for the computation of passive parameterized macromodels from tabulated scattering data. The main contribution is the construction of passivity constraints for parameterized models as a finite set of linear matrix inequalities, thanks to a suitable expansion into Bernstein polynomials. These constraints are embedded in the model identification process, leading to a convex formulation of passivity enforcement, with guaranteed convergence and without requiring any expensive multivariate passivity check. Two numerical examples demonstrate the effectiveness of the proposed approach.
2021
978-1-6654-4269-5
File in questo prodotto:
File Dimensione Formato  
cnf-2021-epeps-bernstein.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 6.1 MB
Formato Adobe PDF
6.1 MB Adobe PDF Visualizza/Apri
cnf-2021-epeps-bernstein-ieee-compressed.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 7.55 MB
Formato Adobe PDF
7.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2947705