A novel black-box model representation and identification process is introduced, specifically designed to extract layout-scalable behavioral macromodels of passive integrated devices from sampled frequency-domain responses. An automated choice of structured frequency-domain basis functions enables extremely accurate approximations for responses characterized by high dynamic ranges over extended frequency bands, overcoming the main limitations of standard approaches. Numerical results confirm that the proposed structured approach provides robust and reliable scalable models, with guaranteed stability and passivity over the frequency band and parameter space of interest.
Structured black-box parameterized macromodels of integrated passive components / Zanco, A.; Bradde, T.; De Stefano, M.; Grivet-Talocia, S.; Hoehne, G.; Brenner, P.. - ELETTRONICO. - (2021), pp. 5-8. (Intervento presentato al convegno 2021 IEEE MTT-S International Microwave Symposium, IMS 2021 tenutosi a Atlanta, GA, USA nel 5-25 June 2021) [10.1109/IMS19712.2021.9574912].
Structured black-box parameterized macromodels of integrated passive components
Zanco A.;Bradde T.;De Stefano M.;Grivet-Talocia S.;
2021
Abstract
A novel black-box model representation and identification process is introduced, specifically designed to extract layout-scalable behavioral macromodels of passive integrated devices from sampled frequency-domain responses. An automated choice of structured frequency-domain basis functions enables extremely accurate approximations for responses characterized by high dynamic ranges over extended frequency bands, overcoming the main limitations of standard approaches. Numerical results confirm that the proposed structured approach provides robust and reliable scalable models, with guaranteed stability and passivity over the frequency band and parameter space of interest.File | Dimensione | Formato | |
---|---|---|---|
cnf-2021-ims-structured-par-ieee.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
712.1 kB
Formato
Adobe PDF
|
712.1 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
cnf-2021-ims-structured-par.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
291.04 kB
Formato
Adobe PDF
|
291.04 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2947677