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Abstract — A novel black-box model representation and
identification process is introduced, specifically designed to
extract layout-scalable behavioral macromodels of passive
integrated devices from sampled frequency-domain responses. An
automated choice of structured frequency-domain basis functions
enables extremely accurate approximations for responses
characterized by high dynamic ranges over extended frequency
bands, overcoming the main limitations of standard approaches.
Numerical results confirm that the proposed structured approach
provides robust and reliable scalable models, with guaranteed
stability and passivity over the frequency band and parameter
space of interest.

Keywords — Passive device modeling, behavioral modeling,
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I. INTRODUCTION

This paper aims at constructing behavioral
macromodels [1] for integrated passive devices, such as
multi-tap inductors or transformers. The reference application
is circuit design for automotive radar IC’s, although the
methodology that is discussed is general and in principle
applicable to any type of linear and passive multiport structure
for various application fields.

The models we consider are scalable and embed in
some parameterized closed form the dependence of the
system response on several design parameters. Scalable
(parameterized or multivariate) models provide extremely
useful tools for designers, provided that

• their frequency responses accurately match reference
data obtained from high-fidelity electromagnetic field
solvers; the same level of accuracy should apply also to
any derived Figure of Merit (FoM) of interest, such as
single-ended, differential or common-mode resistances,
inductances, and associated quality factors;

• they can be synthesized as compact SPICE-compatible
behavioral netlists, to be employed in any type of
analysis as provided by common circuit simulators,
including frequency-domain (FD), time-domain (TD),
harmonic balance (HB), sensitivity and Monte-Carlo
sweeps.

• they are guaranteed stable and passive throughout the
whole allowed parameter space.

Behavioral models having these features can be safely
employed in design verification, optimization, centering,
what-if and robustness/sensitivity analyses.

The above requirements are extremely stringent and
challenging for parameterized macromodels, as they imply:

• an accurate DC response, so that the operating point
computed by circuit solvers in setting up system-level
TD simulations is correct;

• a fine control of broadband accuracy throughout the
frequency bands of interest. In particular, error control
is very difficult to achieve in the entire parameter space
for responses having a high dynamic range and possibly
DC zeros;

• embedding stability and passivity constraints in the
model training phase, where model coefficients are
computed by a suitable fitting process.

This work builds on existing approaches for passive
parameterized macromodeling, and suggests a modified model
structure that significantly improves broadband accuracy of
the models, still ensuring uniform stability, passivity, and
compatibility with standard circuit solvers once exported to
a behavioral SPICE model netlist.

II. PROPOSED MODEL STRUCTURE

Let us consider an integrated passive component with P
electrical ports. A reference example that we will consider in
this work is a coil with one or more center taps and a guard
ring. The electrical ports i = 1, . . . , P will include the inductor
terminals i = 1, 2, the center taps i = 3, . . . , P − 1 and the
guard ring i = P , all referenced to a common ground through
the substrate. The individual elements of the P ×P scattering
matrix are characterized by a dominant inductive or capacitive
behavior, leading to a large dynamic range over a frequency
band starting from DC up to the frequency of interest. For the
applications we consider in this work, the modeling frequency
band is Ω = [0, ωmax] with ωmax = 100 GHz.

We aim at building scalable models, that represent in
some closed parameterized form the dependence on a number
ρ of independent parameters, collected in vector ϑ =
[ϑ1, ϑ2, ..., ϑρ]T. For the integrated spiral inductor example
these parameters may include trace width, separation, inner
radius, substrate permittivity, etc. We will assume that the
ρ-dimensional parameter space is a hyper-rectangle Θ ⊆ Rρ
defined as the Cartesian product of intervals [ϑimin, ϑ

i
max].

As opposed to physics-based models [2], where a fixed
model topology is prescribed and component values are trained



based on multivariate fitting over frequency and parameter
space, we proposed here a pure black-box model. Although
this physics-based equivalent circuit modeling (ECM) is the
standard in current circuit design practice, easy to interpret
ECM’s provide only limited accuracy in the higher frequency
range; they may not be accurate enough for post-layout system
verification, where field solver accuracy is required.

Black-box models are defined by a model structure and free
coefficients, which are identified through a fitting process. The
usual model structure spans the general class of multivariate
rational functions. It is therefore expected that the model
accuracy in both frequency domain and parameter space with
respect to reference frequency responses can be set to an
arbitrarily low and aggressive value, by properly choosing
model orders.

The standard model structure we build on is the following
barycentric form [3]–[5]

H(s,ϑ) =

∑N
n=0 Rn(ϑ)ϕn(s)∑N
n=0 rn(ϑ)ϕn(s)

(1)

where ϕn(s) = 1
s−qn based on a set of basis poles qn for

n > 0 and ϕ0(s) = 1. The coefficients Rn(ϑ) and rn(ϑ)
of numerator and denominator are further expanded in the
parameter space as [6], [7]

Rn(ϑ) =
∑
`

Rn,`ξ`(ϑ), rn(ϑ) =
∑
`

rn,`ξ`(ϑ) (2)

where the basis functions ξ` can be multivariate polynomials,
trigonometric functions, radial basis functions, or any other
choice that is appropriate. In this work, we use multivariate
Chebychev polynomials. The model coefficients Rn,` and
rn,` are identified through multivariate fitting based on a set
of precomputed or adaptively computed frequency response
samples H̆(jωk,ϑm), usually available through a full-wave
(3D) or planar (2.5D) field solver. This process, which
minimizes the model-data error∑

k,m

∥∥∥H(jωk,ϑm)− H̆(jωk,ϑm)
∥∥∥2 (3)

in some prescribed norm is standard, see e.g. [6]–[8].
The expansion (1) has been used and documented

extensively by several Authors. However, it may fail to
reproduce with good accuracy responses with high dynamic
ranges, such as inductive or capacitive couplings characterized
by low-frequency or DC zeros. In fact, a DC zero is not
enforced in the standard model structure (1). Failing to
enforce a DC zero on a response may lead to incorrect
low-frequency behavior, which may result in unrealistic losses
or spurious resistive couplings, wrong DC bias determination
in system-level simulations, and other artefacts. A DC zero
can be enforced in various ways, such as

• using a weighted error norm instead of (3), with a
frequency-dependent weight w(ωk) that emphasizes the
low-frequency band; this approach often deteriorates
accuracy at high frequencies;

• minimize a relative error instead of the absolute error
in (3); this implies using a frequency-dependent weight
w(ωk) inversely proportional to the magnitude of
each individual response; this approach has the same
disadvantage of seriously deteriorating model accuracy
at high frequencies;

• adding equality constraints in the fitting, so that the
explicit DC model value Hi,j(0,ϑm) = 0 is enforced at
machine precision; this approach has the disadvantage of
bringing an unrealistically large number of constraints
in a multivariate setting (each training point in the
parameter space must be associated with an explicit
constraint); in addition, this approach does not guarantee
that the DC zero is present at arbitrary parameter values
ϑ that do not belong to the training dataset, due to
interpolation errors.

We resolve the above difficulties by embedding in the
model structure the presence of DC zeros, only for those
responses for which these zeros are expected. This is achieved
by adopting the modified model structure

H(s,ϑ) =

∑N
n=0 Rn(ϑ) ◦ Φn(s)∑N
n=0 rn(ϑ)ϕn(s)

(4)

where ◦ denotes the Hadamard product and

Φ(i,j)
n (s) =

{
ϕn(s) if H̆i,j(s = 0,ϑ) 6= 0

ϕ0
n(s) if H̆i,j(s = 0,ϑ) = 0

(5)

based on the modified (high-pass) basis function

ϕ0
n(s) =

s

s− qn
. (6)

Model identification based on the structure (4) is
compatible with consolidated fitting processes based on the
Parameterized Sanathanan-Koerner iteration [6]–[8], which is
not repeated here. The model poles pn(ϑ) are provided by the
denominator zeros and are parameter-dependent. These poles
can be constrained to be uniformly stable by adopting positive
definite basis functions ξ`(ϑ) and enforcing the denominator
coefficients to be non-negative via simple linear inequality
constraints, see [9], [10]. Model passivity is checked through
a modified multivariate Hamiltonian check inspired by [11],
which provides localization of passivity violations. The latter
are removed by a standard iterative perturbation. Finally, model
synthesis to a parameterized SPICE netlist is obtained as in [9].

III. RESULTS

We apply the proposed macromodeling strategy to a
parameterized 9-port integrated transformer, where both
windings include 2 taps, and where an additional port is
defined on the surrounding guard ring to model return
path losses through the silicon substrate. The training data
includes m̄ = 7 frequency response matrices H̆(jωk,ϑm)
parameterized by the trace width of both coils conductors.
Each individual response spans the bandwidth from DC to
100 GHz with K = 156 samples. Using these training data
we build a parameterized model with n̄ = 4 common poles



Fig. 1. Comparing model responses to reference data for a selected
inter-winding coupling responses. Different curves correspond to different
parameter (trace width) values. Top panel: standard model structure. Bottom
panel: proposed model structure.

and degree ¯̀ = 1 expansions (2) for both numerator and
denominator in (4).

Figure 1 compares the results of the standard approach
(top panel) based on the barycentric form (1) with the proposed
model structure (4) (bottom panel). As opposed to the standard
approach, the proposed model structure is able to recover the
broadband dynamic range of the data with good accuracy,
even at low frequencies. A correct representation is attained
for the asymptotic low-frequency behavior of this response,
which vanishes at DC. The standard approach, although
overall accuracy is well below engineering practice (absolute
error about 10−3), provides unacceptable results, since the
saturation to a finite DC level corresponds to a direct resistive
path between first and second winding, which is physically
inconsistent with the true behavior of the device.

The proposed structured macromodeling approach provides
also improved accuracy for those Figures of Merit (FoMs) that
are of interest for design purposes. We illustrate this point on
another test case, a simple 3-port integrated inductor designed
to operate in a single-ended configuration. The FoMs of
interest are the frequency-dependent single-ended inductance
Lse and the associated quality factor Qse. A parameterized
structured macromodel (4) was generated with n̄ = 10 poles
and ¯̀ = 2 degree expansions with respect to conductor trace
width, obtaining a model-data error (3) evaluated on a set of
validation parameter samples of 1.61 · 10−2.

We remark that any FoM is a derived quantity, which can
be evaluated based on selected model responses in scattering or
admittance forms [2]. Therefore, the accuracy in derived FoMs
may be deteriorated due to sensitivity and error propagation in
the application of the appropriate conversion formulas. It turns

Fig. 2. Single-ended inductance (top panel) and quality factor (bottom panel)
of a 3-port inductor, computed from proposed structured model (red dashed
lines) and compared to reference data (blue solid lines). Different curves in
the same panel denote different values of conductor width.

out that proposed approach is able to preserve accuracy in
this conversion, due to the correct asymptotic behavior that is
enforced. This is demonstrated in Figure 2, where we compare
the FoMs computed on the training reference data to the FoMs
derived from the model. We see that for both Lse and Qse the
model is able to recover the desired FoMs within acceptable
error bounds. Thanks to the accurate black-box fitting, the
accuracy on these metrics is much improved with respect to
fixed-topology models such as [2], over the full bandwidth of
interest.
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