This paper discloses the methodology and the preliminary results achieved in the framework of the H2020 STRATOFLY Project on the design of the Thermal Protection System of the MR3 vehicle. The results of the aero-thermal assessment performed throughout the trajectory clearly indicate the air-intake leading edges as the most critical area, thus dedicated Thermal Protection System alternatives have been explored. Specifically, solutions coupling high-temperature materials (mainly CMC and tungsten with different emissivity paints) with Liquid Metals Heat Pipe arrangements are modelled. Eventually, the effectiveness of the designed solutions is verified with detailed numerical simulation. The design which includes the air-intake main structure made of CMC material and integrating Nickel - Potassium heat pipe results to be the most promising solution to withstand the high thermal loads experienced by STRATOFLY MR3 throughout its Mach 8 long-haul route.

Thermal Protection System preliminary design of STRATOFLY high-speed propelled vehicle / Scigliano, Roberto; De Simone, Valeria; Marini, Marco; Fusaro, Roberta; Ferretto, Davide; Viola, Nicole. - ELETTRONICO. - (2021), pp. 1-15. (Intervento presentato al convegno 32nd Congress of the International Council of the Aeronautical Sciences tenutosi a Shanghai (CN) nel 6-10/09/2021).

Thermal Protection System preliminary design of STRATOFLY high-speed propelled vehicle

Fusaro, Roberta;Ferretto, Davide;Viola, Nicole
2021

Abstract

This paper discloses the methodology and the preliminary results achieved in the framework of the H2020 STRATOFLY Project on the design of the Thermal Protection System of the MR3 vehicle. The results of the aero-thermal assessment performed throughout the trajectory clearly indicate the air-intake leading edges as the most critical area, thus dedicated Thermal Protection System alternatives have been explored. Specifically, solutions coupling high-temperature materials (mainly CMC and tungsten with different emissivity paints) with Liquid Metals Heat Pipe arrangements are modelled. Eventually, the effectiveness of the designed solutions is verified with detailed numerical simulation. The design which includes the air-intake main structure made of CMC material and integrating Nickel - Potassium heat pipe results to be the most promising solution to withstand the high thermal loads experienced by STRATOFLY MR3 throughout its Mach 8 long-haul route.
2021
978-3-932182-91-4
File in questo prodotto:
File Dimensione Formato  
ICAS2020_0493_paper.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2937776