We propose a data-driven approach to provide augmented knowledge of the QoT impairments of photonic switches in a software-defined networking context. The pro- posed framework is topological and technological agnostic and can be operated in real- time.
Machine Learning Assisted Model of QoT Penalties for Photonics Switching Systems / Khan, Ihtesham; Tunesi, Lorenzo; Masood, MUHAMMAD UMAR; Ghillino, Enrico; Bardella, Paolo; Carena, Andrea; Curri, Vittorio. - ELETTRONICO. - (2021). (Intervento presentato al convegno Photonics in Switching and Computing 2021 tenutosi a Washington, DC United States nel 27–29 September 2021).
Machine Learning Assisted Model of QoT Penalties for Photonics Switching Systems
Ihtesham Khan;Lorenzo Tunesi;Muhammad Umar Masood;Paolo Bardella;Andrea Carena;Vittorio Curri
2021
Abstract
We propose a data-driven approach to provide augmented knowledge of the QoT impairments of photonic switches in a software-defined networking context. The pro- posed framework is topological and technological agnostic and can be operated in real- time.File | Dimensione | Formato | |
---|---|---|---|
PSC-2021-M2A.3.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
352.73 kB
Formato
Adobe PDF
|
352.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
C_IPC_Machine_Learning_Aided_QoT_Assessment_of_Photonics_Switching_System_in_Software_defined_Optical_Network_29042021 (2).pdf
Open Access dal 30/09/2022
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
273.59 kB
Formato
Adobe PDF
|
273.59 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2936652