This paper presents an inverse model for the optimization of the geometrical parameters of a parallel coupled-line pass-band filter. Given the overall structure of the filter, the least square support vector machine is combined with the principal component analysis with the aim of constructing an inverse model able to estimate the geometrical parameters of the filter starting from a frequency-domain mask. Such model is trained via a set of scattering parameters computed via a 2D solver for few configurations of the filter geometrical parameters. The feasibility and the accuracy of the proposed optimization scheme is investigated by comparing its predictions with the corresponding optimal configuration estimated via a commercial tool.

Compressed Machine Learning-Based Inverse Model for the Design of Microwave Filters / Sedaghat, Mostafa; Trinchero, Riccardo; Canavero, Flavio. - ELETTRONICO. - (2021). (Intervento presentato al convegno MTT-S International Microwave Symposium (IMS) tenutosi a Atlanta, GA, USA nel 7-25 June 2021) [10.1109/IMS19712.2021.9574884].

Compressed Machine Learning-Based Inverse Model for the Design of Microwave Filters

Mostafa, Sedaghat;Riccardo, Trinchero;Flavio, Canavero
2021

Abstract

This paper presents an inverse model for the optimization of the geometrical parameters of a parallel coupled-line pass-band filter. Given the overall structure of the filter, the least square support vector machine is combined with the principal component analysis with the aim of constructing an inverse model able to estimate the geometrical parameters of the filter starting from a frequency-domain mask. Such model is trained via a set of scattering parameters computed via a 2D solver for few configurations of the filter geometrical parameters. The feasibility and the accuracy of the proposed optimization scheme is investigated by comparing its predictions with the corresponding optimal configuration estimated via a commercial tool.
2021
978-1-6654-0307-8
File in questo prodotto:
File Dimensione Formato  
IMS2021_Mostafa Sedaghat.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF Visualizza/Apri
Sedaghat-Compressed.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 816.36 kB
Formato Adobe PDF
816.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2932616