Stride length is often used to quantitatively evaluate human locomotion performance. Stride by stride estimation can be conveniently obtained from the signals recorded using miniaturized inertial sensors attached to the feet and appropriate algorithms for data fusion and integration. To reduce the detrimental drift effect, different algorithmic solutions can be implemented. However, the overall method accuracy is supposed to depend on the optimal selection of the parameters which are required to be set. This study aimed at evaluating the influence of the main parameters involved in well-established methods for stride length estimation. An optimization process was conducted to improve methods' performance and preferable values for the considered parameters according to different walking speed ranges are suggested. A parametric solution is also proposed to target the methods on specific subjects' gait characteristics. The stride length estimates were obtained from straight walking trials of five healthy volunteers and were compared with those obtained from a stereo-photogrammetric system. After parameters tuning, percentage errors for stride length were 1.9%, 2.5% and 2.6% for comfortable, slow, and fast walking conditions, respectively.
An optimal procedure for stride length estimation using foot-mounted magneto-inertial measurement units / Rossanigo, R.; Caruso, M.; Salis, F.; Bertuletti, S.; Croce, U. D.; Cereatti, A.. - (2021), pp. 1-6. (Intervento presentato al convegno 2021 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2021 tenutosi a Lausanne, Switzerland nel 23-25 June 2021) [10.1109/MeMeA52024.2021.9478604].
An optimal procedure for stride length estimation using foot-mounted magneto-inertial measurement units
Rossanigo R.;Caruso M.;Bertuletti S.;Cereatti A.
2021
Abstract
Stride length is often used to quantitatively evaluate human locomotion performance. Stride by stride estimation can be conveniently obtained from the signals recorded using miniaturized inertial sensors attached to the feet and appropriate algorithms for data fusion and integration. To reduce the detrimental drift effect, different algorithmic solutions can be implemented. However, the overall method accuracy is supposed to depend on the optimal selection of the parameters which are required to be set. This study aimed at evaluating the influence of the main parameters involved in well-established methods for stride length estimation. An optimization process was conducted to improve methods' performance and preferable values for the considered parameters according to different walking speed ranges are suggested. A parametric solution is also proposed to target the methods on specific subjects' gait characteristics. The stride length estimates were obtained from straight walking trials of five healthy volunteers and were compared with those obtained from a stereo-photogrammetric system. After parameters tuning, percentage errors for stride length were 1.9%, 2.5% and 2.6% for comfortable, slow, and fast walking conditions, respectively.File | Dimensione | Formato | |
---|---|---|---|
Rossanigo_et_al_MeMeA(2021).pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
726.29 kB
Formato
Adobe PDF
|
726.29 kB | Adobe PDF | Visualizza/Apri |
Caruso-AnOptimal.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
3.51 MB
Formato
Adobe PDF
|
3.51 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2927972