In this paper we propose to study the dispersion diagram of non-canonical glide-symmetric unit cells via integral equations with the use of the periodic Green's function and discretized via the method of moment. The proposed approach is validated with a fully metallic implementation of a Luneburg lens operating at Ka-band with potential use for 5G communications. The promising preliminary numerical results highlight the potentialities of this approach.

Numerical Modelling of Glide Periodic Structures via Integral Equations / Rivero Campos, J.; Tobon Vasquez, J. A.; Valerio, G.; Vipiana, F.. - ELETTRONICO. - (2021), pp. 1-3. (Intervento presentato al convegno 15th European Conference on Antennas and Propagation, EuCAP 2021 tenutosi a Dusseldorf, Germany nel 22-26 March 2021) [10.23919/EuCAP51087.2021.9411431].

Numerical Modelling of Glide Periodic Structures via Integral Equations

Rivero Campos J.;Tobon Vasquez J. A.;Vipiana F.
2021

Abstract

In this paper we propose to study the dispersion diagram of non-canonical glide-symmetric unit cells via integral equations with the use of the periodic Green's function and discretized via the method of moment. The proposed approach is validated with a fully metallic implementation of a Luneburg lens operating at Ka-band with potential use for 5G communications. The promising preliminary numerical results highlight the potentialities of this approach.
2021
978-88-31299-02-2
File in questo prodotto:
File Dimensione Formato  
Numerical_Modelling_of_Glide_Periodic_Structures_via_Integral_Equations.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 749.69 kB
Formato Adobe PDF
749.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1570687367_SyMat.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 334.49 kB
Formato Adobe PDF
334.49 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2927874