In this paper we propose to study the dispersion diagram of non-canonical glide-symmetric unit cells via integral equations with the use of the periodic Green's function and discretized via the method of moment. The proposed approach is validated with a fully metallic implementation of a Luneburg lens operating at Ka-band with potential use for 5G communications. The promising preliminary numerical results highlight the potentialities of this approach.
Numerical Modelling of Glide Periodic Structures via Integral Equations / Rivero Campos, J.; Tobon Vasquez, J. A.; Valerio, G.; Vipiana, F.. - ELETTRONICO. - (2021), pp. 1-3. (Intervento presentato al convegno 15th European Conference on Antennas and Propagation, EuCAP 2021 tenutosi a Dusseldorf, Germany nel 22-26 March 2021) [10.23919/EuCAP51087.2021.9411431].
Numerical Modelling of Glide Periodic Structures via Integral Equations
Rivero Campos J.;Tobon Vasquez J. A.;Vipiana F.
2021
Abstract
In this paper we propose to study the dispersion diagram of non-canonical glide-symmetric unit cells via integral equations with the use of the periodic Green's function and discretized via the method of moment. The proposed approach is validated with a fully metallic implementation of a Luneburg lens operating at Ka-band with potential use for 5G communications. The promising preliminary numerical results highlight the potentialities of this approach.File | Dimensione | Formato | |
---|---|---|---|
Numerical_Modelling_of_Glide_Periodic_Structures_via_Integral_Equations.pdf
accesso riservato
Descrizione: Articolo principale
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
749.69 kB
Formato
Adobe PDF
|
749.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1570687367_SyMat.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
334.49 kB
Formato
Adobe PDF
|
334.49 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2927874