In recent years, several innovative diesel combustion systems were developed and optimized in order to enhance the air and injected fuel mixing for engine e-ciency improvements and to mitigate the formation of fuel-rich regions for soot emissions reduction. With these aims, a three-dimensional computational fl uid dynamics (3D-CFD) numerical study was carried out in order to evaluate the impact of three di erent piston bowl geometries on a passenger car four-cylinder diesel engine, 1.6 liters. Once the numerical model was validated considering the baseline re-entrant bowl, two inno vative bowl geometries were defi ned: one based on the stepped-lip bowl; the other including a number of radial bumps equal to the nozzle holes number. Firstly, the rated power engine operating condition was investigated under nonreacting conditions to evaluate the piston bowl e ects on the in-cylinder mixing. Results highlight for both the innovative piston bowls better air utilization with respect to the re-entrant bowl: The stepped-lip bowl creates a dual toroidal vortex leading to a higher air/fuel mixing, while the radial-bumps bowl signifi cantly a ects the jet-To-jet interaction and promotes the recirculation of the fuel jet downstream to the bump, where the available oxygen enhances the mixing rate. After that, the combustion analysis was carried out for both rated power and partial-load engine operating conditions. Results confi rmed that thanks to the better air-fuel mixing, the combustion process can be improved thanks to the innovative bowl designs, both increasing the engine e-ciency at full-load condition and minimizing the engine-out soot emissions at partial-load operating point.

Numerical Investigation on mixture formation and combustion process of innovative piston bowl geometries in a swirl-supported light-duty diesel engine / Millo, F.; Piano, A.; Roggio, S.; Bianco, A.; Pesce, F. C.. - In: SAE INTERNATIONAL JOURNAL OF ENGINES. - ISSN 1946-3936. - ELETTRONICO. - 14:2(2020), pp. 247-262. [10.4271/03-14-02-0015]

Numerical Investigation on mixture formation and combustion process of innovative piston bowl geometries in a swirl-supported light-duty diesel engine

Millo F.;Piano A.;Roggio S.;
2020

Abstract

In recent years, several innovative diesel combustion systems were developed and optimized in order to enhance the air and injected fuel mixing for engine e-ciency improvements and to mitigate the formation of fuel-rich regions for soot emissions reduction. With these aims, a three-dimensional computational fl uid dynamics (3D-CFD) numerical study was carried out in order to evaluate the impact of three di erent piston bowl geometries on a passenger car four-cylinder diesel engine, 1.6 liters. Once the numerical model was validated considering the baseline re-entrant bowl, two inno vative bowl geometries were defi ned: one based on the stepped-lip bowl; the other including a number of radial bumps equal to the nozzle holes number. Firstly, the rated power engine operating condition was investigated under nonreacting conditions to evaluate the piston bowl e ects on the in-cylinder mixing. Results highlight for both the innovative piston bowls better air utilization with respect to the re-entrant bowl: The stepped-lip bowl creates a dual toroidal vortex leading to a higher air/fuel mixing, while the radial-bumps bowl signifi cantly a ects the jet-To-jet interaction and promotes the recirculation of the fuel jet downstream to the bump, where the available oxygen enhances the mixing rate. After that, the combustion analysis was carried out for both rated power and partial-load engine operating conditions. Results confi rmed that thanks to the better air-fuel mixing, the combustion process can be improved thanks to the innovative bowl designs, both increasing the engine e-ciency at full-load condition and minimizing the engine-out soot emissions at partial-load operating point.
File in questo prodotto:
File Dimensione Formato  
03-14-02-0015.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 7.42 MB
Formato Adobe PDF
7.42 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2925552