This paper introduces a probabilistic nonparametric surrogate model based on Gaussian process regression to perform uncertainty quantification tasks with the inclusion of confidence bounds on the predicted statistics. The performance of the proposed method is compared against two state-of-the-art techniques, namely the parametric sparse polynomial chaos expansion and the nonparametric least-square support vector machine regression.

A Nonparametric Surrogate Model for Stochastic Crosstalk Analysis Including Confidence Bounds / Manfredi, Paolo; Trinchero, Riccardo. - ELETTRONICO. - (2021), pp. 1-4. (Intervento presentato al convegno 2021 IEEE 25th Workshop on Signal and Power Integrity tenutosi a Siegen, Germany nel 10-12 May 2021) [10.1109/spi52361.2021.9505176].

A Nonparametric Surrogate Model for Stochastic Crosstalk Analysis Including Confidence Bounds

Paolo Manfredi;Riccardo Trinchero
2021

Abstract

This paper introduces a probabilistic nonparametric surrogate model based on Gaussian process regression to perform uncertainty quantification tasks with the inclusion of confidence bounds on the predicted statistics. The performance of the proposed method is compared against two state-of-the-art techniques, namely the parametric sparse polynomial chaos expansion and the nonparametric least-square support vector machine regression.
2021
978-1-6654-2388-5
File in questo prodotto:
File Dimensione Formato  
manfredi-SPI-2021-final.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 877.64 kB
Formato Adobe PDF
877.64 kB Adobe PDF Visualizza/Apri
cnf-2021-SPI.pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2921772