This paper introduces a probabilistic nonparametric surrogate model based on Gaussian process regression to perform uncertainty quantification tasks with the inclusion of confidence bounds on the predicted statistics. The performance of the proposed method is compared against two state-of-the-art techniques, namely the parametric sparse polynomial chaos expansion and the nonparametric least-square support vector machine regression.
A Nonparametric Surrogate Model for Stochastic Crosstalk Analysis Including Confidence Bounds / Manfredi, Paolo; Trinchero, Riccardo. - ELETTRONICO. - (2021), pp. 1-4. (Intervento presentato al convegno 2021 IEEE 25th Workshop on Signal and Power Integrity tenutosi a Siegen, Germany nel 10-12 May 2021) [10.1109/spi52361.2021.9505176].
A Nonparametric Surrogate Model for Stochastic Crosstalk Analysis Including Confidence Bounds
Paolo Manfredi;Riccardo Trinchero
2021
Abstract
This paper introduces a probabilistic nonparametric surrogate model based on Gaussian process regression to perform uncertainty quantification tasks with the inclusion of confidence bounds on the predicted statistics. The performance of the proposed method is compared against two state-of-the-art techniques, namely the parametric sparse polynomial chaos expansion and the nonparametric least-square support vector machine regression.File | Dimensione | Formato | |
---|---|---|---|
manfredi-SPI-2021-final.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
877.64 kB
Formato
Adobe PDF
|
877.64 kB | Adobe PDF | Visualizza/Apri |
cnf-2021-SPI.pdf
accesso riservato
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
2.78 MB
Formato
Adobe PDF
|
2.78 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2921772