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Abstract—This paper introduces a probabilistic nonparamet-
ric surrogate model based on Gaussian process regression to
perform uncertainty quantification tasks with the inclusion of
confidence bounds on the predicted statistics. The performance
of the proposed method is compared against two state-of-the-
art techniques, namely the parametric sparse polynomial chaos
expansion and the nonparametric least-square support vector
machine regression.

Index Terms—Crosstalk, Gaussian process regression, machine
learning, surrogate modeling, uncertainty quantification.

I. INTRODUCTION

The increasing miniaturization in large-scale integration
circuits is pushing the demand for uncertainty quantification
(UQ) tools. In the signal integrity (SI) community, a great deal
of attention was devoted in recent years to the generalized
polynomial chaos expansion (PCE) [1]–[3] and to the related
stochastic collocation methods [4], [5].

The PCE is a parametric surrogate model, meaning that the
form of the model is determined a priori based on the number
of uncertain parameters as well as the selected expansion
order and truncation scheme [6]. The model coefficients are
then computed by means of spectral methods, interpolation, or
least-square regression. The PCE model is attractive because
it is designed in a statistical sense: proper orthogonal basis
functions are selected according to the probability distribution
of the uncertain parameters, thereby favoring global statistical
accuracy over local accuracy. Moreover, some statistical mo-
ments, as well as sensitivity indices, are obtained analytically
from the PCE coefficients [7]. The parametric feature inher-
ently implies that the model does not scale favorably with the
number of uncertain parameters, and that a large number of
samples is required to estimate the model coefficients. The
latter drawback is overcome by the adoption of sparse PCE
models [6], at the expense of a reduced efficiency in the
calculation of the coefficients.

On the other hand, nonparametric machine learning (ML)
methods exhibit a complexity that is mostly determined by the
number of available “training data”, thus becoming promising
alternatives for problems with many independent parame-
ters [8], [9]. Examples with applications to UQ in SI problems
were reported for artificial neural networks [10] as well as
for support vector machine (SVM) and least-square support
vector machine (LS-SVM) regression [11]. In this scenario,
ML surrogates are used for the fast prediction of random

samples in a Monte Carlo (MC) analysis. The combination
with principal component analysis (PCA) allows to effectively
deal with multi-output problems [12].

A common feature of both the aforementioned parametric
and nonparametric methods is the lack of information about
the model accuracy. In this regard, an interesting alternative is
provided by Gaussian process regression (GPR) [13]. Indeed,
while most methods provide a deterministic model, GPR
outputs a stochastic process. Hence, the model prediction is not
a deterministic value, but rather a Gaussian random variable
with a certain mean and standard deviation. In an UQ scenario,
this information can be exploited to provide confidence bounds
for the statistics of interest.

This paper discusses an application of GPR to UQ with
emphasis on SI analysis. The features and performance of the
proposed method are compared against two aforementioned
surrogate modeling approaches, namely the parametric sparse
PCE and the nonparametric LS-SVM regression.

II. PROBLEM DEFINITION

We consider a generic system depending on a set of d
uncertain parameters x = (x1, . . . , xd)

T, i.e.,

y =M(x), (1)

where M : Rd → RM is a function that maps a given
configuration of the parameters x to the corresponding outputs
of interest y = (y1, . . . , yM )T.

The goal of UQ is to calculate pertinent statistics of y, such
as moments and probability distributions. In a MC analysis,
one would draw some random realizations of the uncertain
parameters {x∗i }Ni=1, use (1) to calculate the corresponding
outputs {y∗i }Ni=1, with y∗i = M(x∗i ), and use standard
numerical approaches to calculate pertinent statistics. Owing to
the slow convergence of the estimates, this approach becomes
inefficient when (1) is expensive to compute. For this reason,
more effective surrogate modeling techniques were proposed
for UQ.

III. STATE-OF-THE-ART SURROGATE MODELS

In this section, we briefly review two specific and effective
implementations of PCE and SVM methods, namely the sparse
PCE and the LS-SVM regression, and we highlight their main
features. We refer to [12] for further details. For the ease of
notation, we consider a system (1) with scalar output. We also



assume that a set of observations {(x†l , y
†
l )}Ll=1 be available

for training the surrogate models, with y†l = M(x†l ), ∀l =
1, . . . , L.

A. Sparse PCE

A PCE surrogate takes the form

y ≈ M̂PCE(x) =
∑
α∈A

cαϕα(x), (2)

where ϕα are orthogonal polynomials, α are multi-indices in-
dicating the degree in each dimension, and the coefficients cα
are typically computed by means of spectral projection, least-
square regression, or interpolation. An important feature of
PCE surrogates is that they are specifically tailored for UQ
by taking into account the distribution of the input uncertain
parameters, both in the definition of the basis functions and
in the calculation of the model coefficients.

In standard implementations, the size of set A grows
exponentially with d, thus demanding for a very large number
of samples for the training, thereby making it prohibitive. This
drawback is mitigated by sparse PCEs, in which a subset
of non-negligible coefficients is adaptively identified with a
limited amount of data [6]. Nevertheless, the starting point is
always the full-blown PCE, which makes this approach still
parametric.

B. LS-SVM Regression

The LS-SVM model takes the form

y ≈ M̂LS−SVM(x) =

L∑
l=1

alK(x,x†l ;θ) + b, (3)

where K(x,x′;θ) is a kernel function. The model coefficients
al and b, as well as the kernel hyperparameters θ, are fitted
in the process of model training.

As opposed to the PCE surrogate (2), the complexity of
the LS-SVM model (3) is determined by the number of
training samples L. Moreover, the LS-SVM surrogate is not
specifically designed for UQ, but it is rather used for the fast
prediction of samples in a MC analysis [11].

C. Multiple Outputs

Very often the output of system (1) is not scalar. An
example is when the UQ is to be performed on an entire
transient or frequency-domain response of a circuit, possibly
at multiple ports. The sparse PCE and LS-SVM methods can
be individually applied to each output component. However,
this approach becomes unfeasible for very-large size outputs.
A more effective strategy is to compress output variables using
PCA, and train an individual model for the principal compo-
nents only [12]. Since the number of principal components is
typically from two to three orders of magnitude smaller than
the original output components, this approach turns out to be
much more efficient. A model for the original output is then
recovered by inverse transformation.
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(b)Fig. 1. Network for the application example, reproduced from [14].

IV. PROPOSED PROBABILISTIC GPR MODEL

The GPR returns a stochastic process rather than a deter-
ministic function, i.e.,

y ≈ M̂GPR(x) ∼ GP(m(x), c(x,x′)) (4)

where m(x) and c(x,x′) denote the mean and covariance
functions, respectively. Hence, the model prediction for a
given value x∗ is Gaussian random variable with mean m(x∗)
and standard deviation

√
c(x∗,x∗). The latter provides an

indication of the model uncertainty. The process mean and
covariance are found by choosing a prior Gaussian process
with a given kernel function k(x,x′;θ) and conditioning it to
interpolate the training samples [13].

When sampling the model (4) in a MC scenario using
a finite number of samples {x∗i }Ni=1, the result is a set of
correlated Gaussian random variables with mean

µy =K∗K
−1y† (5)

and covariance matrix

Σy =K∗∗ −K∗K−1KT
∗ , (6)

where y† = (y†1, . . . , y
†
L)

T is a vector collecting the observa-
tions, whereas K, K∗, and K∗∗ are matrices with entries

[K]lm = k(x†l ,x
†
m) (7a)

[K∗]il = k(x∗i ,x
†
l ) (7b)

[K∗∗]ij = k(x∗i ,x
∗
j ) (7c)

respectively, with l,m = 1, . . . , L and i, j = 1, . . . , N .
A random draw from N (µy,Σy) provides a realization of

the MC samples. By considering an ensemble of predictions,
statistical information can be estimated with the inclusion
of confidence bounds. Also in this case, the method can be
combined with PCA to deal with multiple-output systems.

V. NUMERICAL RESULTS

We apply the discussed methods to the interconnect of
Fig. 1, which is taken from [14]. The quantity of interest
is the transient crosstalk at the 0.5-pF termination. For a
comparison on the performance in terms of computational
time, we consider four different test cases with an increasing



number of uncertain parameters, as summarized in Table I. The
first test case has d = 11 uncertain parameters, namely all the
trace widths and gaps of the transmission lines. The second test
case adds eight uncertain parameters, i.e., the vertical positions
of the traces as well as the substrate thickness. The third test
case further includes the trace thicknesses. Finally, the network
capacitors are added to the forth test case, which has therefore
a total of d = 35 uncertain parameters.

The original model (1) is in this case represented by
HSPICE simulations of the network of Fig. 1. For the MC
analysis, N = 1000 samples are considered, drawn according
to a Latin hypercube sampling scheme. This step takes roughly
20 min for each test case. As a rule of thumb, L = 10 · d
samples, distributed according to a Sobol’s low-discrepancy
sequence, are used for training the surrogate models. For a
fair comparison, the surrogate models are then used to predict
the same samples as considered in the reference MC analysis.

TABLE I
DESCRIPTION OF THE TEST CASES.

Test case d (Additional) uncertain parameters Nominal value

#1 11

w1l, w1c, w1r 150 µm
w2l, w2r 130 µm
w3l, w3r 170 µm

g1l, g1r , g2, g3 150 µm

#2 19

d1l, d1c, d1r 100 µm
d2l, d2r 140 µm
d3l, d3r 70 µm

h 200 µm

#3 26
t1l, t1c, t1r 30 µm
t2l, t2r 20 µm
t3l, t3r 40 µm

#4 35
Cb1, Cb2, Cb3 1 pF
Cc1, Cc2, Cc3

Cc4 0.5 pF

To calculate the sparse PCE models, we use the UQLab
toolbox [15]. We select an expansion with total-degree trun-
cation and a maximum order of four, and the least-angle
regression algorithm for the calculation of the coefficients.
For the LS-SVM model, we use the LS-SVMlab toolbox [16]
with a radial basis function kernel. Finally, to train the GPR
model, we make use of the pertinent routine available in the
MATLAB® Statistics and Machine Learning ToolboxTM [17]
with a squared exponential kernel. All simulations are per-
formed on a Lenovo ThinkPad X1 Yoga laptop with an Intel(R)
Core(TM) i7-7500U processor, CPU running at 2.7 GHz, and
16 GB of RAM.

Figure 2 shows the results pertaining to the transient
crosstalk for Test Case #4. The solid gray lines in the top
panel are a subset of the MC responses. The solid blue line is
the mean of the MC samples, whereas the dashed green line
is the GPR estimate of the mean. Confidence bounds are also
plotted, yet they are too tight to be distinguished, denoting a
very high accuracy of the estimate. The bottom panels refer to
the variance instead, plotted on a reduced time window. The
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Fig. 2. Stochastic transient crosstalk for Test Case #4. Top panel: subset of
MC samples (solid gray lines), mean of the MC samples (solid blue line), GPR
estimate of the mean (dashed green line). Bottom panels: crosstalk variance
computed from the MC samples (solid blue lines) and with the PCE, LS-SVM,
and GPR surrogate models (dashed red, dash-dotted yellow, and dashed green
lines, respectively). The shaded green area is the 99% CI of the GPR estimate.
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Fig. 3. PDF of the crosstalk at 1.71 ns for the four test cases. Blue histograms:
reference MC distribution; dashed red, dash-dotted yellow, and solid green
lines: distributions obtained from the sparse PCE, LS-SVM, and GPR models,
respectively; shaded green area: 99% CI of the GPR distribution.

result of the MC analysis (solid blue line) is compared in the
left panel against the variance obtained with the sparse PCE
and LS-SVM surrogates (dashed red and dash-dotted yellow
lines, respectively), and in the right panel against the estimate
of the GPR model (dashed green line). The shaded green area
indicates the 99% confidence interval (CI) of the estimate. It
is observed that the MC variance is mostly enclosed by the
CI. The results provided by the three surrogate models are
comparable, yet the GPR model is more informative. Indeed,
the information on the CI bridges the discrepancy that is
observed between the prediction and the reference.

Furthermore, Fig. 3 shows, for all the four test cases, the
probability density function (PDF) at 1.71 ns, i.e., the time
around which the maximum crosstalk occurs. The distribution



TABLE II
PERFORMANCE OF SURROGATE MODELS.

Test Case #1 Test Case #2 Test Case #3 Test Case #4
Training samples 128.1 s (L = 110) 267.3 s (L = 190) 366.6 s (L = 260) 469.3 s (L = 350)
# principal components 13 35 38 43
Step \ Method PCE LS-SVM GPR PCE LS-SVM GPR PCE LS-SVM GPR PCE LS-SVM GPR
Model training 7.4 s 14.4 s 5.3 s 37.1 s 67.3 s 4.7 s 78.0 s 71.5 s 7.5 s 336.9 s 136.6 s 7.8 s
Model evaluation 0.1 s 0.2 s 163.1 s 0.3 s 0.4 s 370.7 s 0.2 s 0.3 s 276.7 s 0.3 s 0.5 s 250.1 s
Total 7.5 s 14.6 s 168.4 s 37.4 s 67.7 s 375.4 s 78.2 s 71.8 s 284.2 s 337.2 s 137.1 s 257.9 s

of the MC samples is shown by the blue histograms. The
predictions obtained from the PCE model (dashed red lines)
are closer to the MC results. This can be explained by the
fact that the PCE is specifically designed in statistical terms.
The LS-SVM and GPR surrogates (dash-dotted yellow and
solid green lines, respectively) provide comparable results that
slightly differ from the reference MC distributions. The LS-
SVM result is enclosed by the 99% CI of the GPR estimate
(shaded green area).

Finally, Table II provides the main figures concerning the
efficiency of the surrogate models. The second row reports
the number of principal components, which corresponds to
the number of individual surrogate models to be trained. It
should be noted that the original training data consist of L
responses evaluated at 1001 time points. It is interesting to
note that the time required to train the GPR model is more
or less constant with the number of uncertain parameters,
and it is by far the lowest. The training cost of the LS-
SVM and sparse PCE models exhibits a linear and exponential
growth, respectively. On the other hand, the model evaluation
is negligible for both the sparse PCE (which features an
analytical calculation of the mean and the variance) and the
LS-SVM, whereas it is relatively high for the GPR model. This
is due to the additional overhead required by the manipulation
of the posterior covariance matrices in the calculation of the
prediction confidence, and it is mainly determined by the
number N of random samples considered. The inversion of the
prior covariance matrix in (6) is instead negligible because of
the limited number of training samples that is used. If only the
mean prediction (5) is of interest, the evaluation time becomes
comparable to the other two techniques. Owing to its better
scaling with the number of uncertain parameters, the GPR
method becomes more efficient for large d.

VI. CONCLUSIONS

This paper introduced a probabilistic nonparametric model,
based on GPR, for UQ with the inclusion of confidence
bounds. The performance of the proposed method was com-
pared against two state-of-the-art techniques, namely the para-
metric sparse PCE and the nonparametric LS-SVM regression,
in the simulation of crosstalk in an interconnect network. It
was found that the GPR exhibits the lowest training cost and
scales better with the number of uncertain parameters. The
accuracy is comparable with the LS-SVM and slightly worse
than the PCE method. However, this loss is compensated by
the additional information on the confidence bounds.
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