We introduce a multivariate adaptive sampling algorithm for the passivity characterization of parameterized macromodels. The proposed approach builds on existing sampling methods based on adaptive frequency warping for tracking pole-induced variability of passivity metrics, which however are available only for univariate (non-parameterized) models. Here, we extend this approach to the more challenging parameterized setting, where model poles hence passivity violations depend on possibly several external parameters embedded in the macro-model. Numerical examples show excellent performance and speedup with respect to competing approaches.
A Multivariate Adaptive Sampling Scheme for Passivity Characterization of Parameterized Macromodels / De Stefano, Marco; Grivet-Talocia, Stefano. - ELETTRONICO. - (2021), pp. 1-3. (Intervento presentato al convegno 2021 IEEE 25th Workshop on Signal and Power Integrity (SPI) tenutosi a Virtual conference nel 10-12 May 2021) [10.1109/SPI52361.2021.9505207].
A Multivariate Adaptive Sampling Scheme for Passivity Characterization of Parameterized Macromodels
De Stefano, Marco;Grivet-Talocia, Stefano
2021
Abstract
We introduce a multivariate adaptive sampling algorithm for the passivity characterization of parameterized macromodels. The proposed approach builds on existing sampling methods based on adaptive frequency warping for tracking pole-induced variability of passivity metrics, which however are available only for univariate (non-parameterized) models. Here, we extend this approach to the more challenging parameterized setting, where model poles hence passivity violations depend on possibly several external parameters embedded in the macro-model. Numerical examples show excellent performance and speedup with respect to competing approaches.| File | Dimensione | Formato | |
|---|---|---|---|
| cnf-2021-spi-sampling-ieee.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										1.87 MB
									 
										Formato
										Adobe PDF
									 | 1.87 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| cnf-2021-spi-sampling.pdf accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
										Dimensione
										479.02 kB
									 
										Formato
										Adobe PDF
									 | 479.02 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2920772
			
		
	
	
	
			      	