We introduce a multivariate adaptive sampling algorithm for the passivity characterization of parameterized macromodels. The proposed approach builds on existing sampling methods based on adaptive frequency warping for tracking pole-induced variability of passivity metrics, which however are available only for univariate (non-parameterized) models. Here, we extend this approach to the more challenging parameterized setting, where model poles hence passivity violations depend on possibly several external parameters embedded in the macro-model. Numerical examples show excellent performance and speedup with respect to competing approaches.
A Multivariate Adaptive Sampling Scheme for Passivity Characterization of Parameterized Macromodels / De Stefano, Marco; Grivet-Talocia, Stefano. - ELETTRONICO. - (2021), pp. 1-3. (Intervento presentato al convegno 2021 IEEE 25th Workshop on Signal and Power Integrity (SPI) tenutosi a Virtual conference nel 10-12 May 2021) [10.1109/SPI52361.2021.9505207].
A Multivariate Adaptive Sampling Scheme for Passivity Characterization of Parameterized Macromodels
De Stefano, Marco;Grivet-Talocia, Stefano
2021
Abstract
We introduce a multivariate adaptive sampling algorithm for the passivity characterization of parameterized macromodels. The proposed approach builds on existing sampling methods based on adaptive frequency warping for tracking pole-induced variability of passivity metrics, which however are available only for univariate (non-parameterized) models. Here, we extend this approach to the more challenging parameterized setting, where model poles hence passivity violations depend on possibly several external parameters embedded in the macro-model. Numerical examples show excellent performance and speedup with respect to competing approaches.File | Dimensione | Formato | |
---|---|---|---|
cnf-2021-spi-sampling-ieee.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
cnf-2021-spi-sampling.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
479.02 kB
Formato
Adobe PDF
|
479.02 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2920772