We propose a machine learning-based approach for the management of photonic switching systems in a software-defined network context. This work aims to describe a soft-warized system that is both topological and technological agnostic and can be employed in real-time.

Softwarized and Autonomous Management of Photonic Switching Systems Using Machine Learning / Khan, Ihtesham; Masood, MUHAMMAD UMAR; Tunesi, Lorenzo; Ghillino, Enrico; Bardella, Paolo; Carena, Andrea; Curri, Vittorio. - ELETTRONICO. - (2021). (Intervento presentato al convegno 2021 International Conference on Optical Network Design and Modeling (ONDM) tenutosi a Gothenburg, Sweden nel June 28 - July 1, 2021).

Softwarized and Autonomous Management of Photonic Switching Systems Using Machine Learning

KHAN,IHTESHAM;MASOOD, MUHAMMAD UMAR;Tunesi, Lorenzo;Bardella, Paolo;Carena, Andrea;Curri,Vittorio
2021

Abstract

We propose a machine learning-based approach for the management of photonic switching systems in a software-defined network context. This work aims to describe a soft-warized system that is both topological and technological agnostic and can be employed in real-time.
2021
978-3-903176-33-1
File in questo prodotto:
File Dimensione Formato  
1570710701.pdf

non disponibili

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
C_ONDM_Softwarized_and_Autonomous_Management____V1_10032021 (1).pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2917844