We propose a machine learning-based approach for the management of photonic switching systems in a software-defined network context. This work aims to describe a soft-warized system that is both topological and technological agnostic and can be employed in real-time.
Softwarized and Autonomous Management of Photonic Switching Systems Using Machine Learning / Khan, Ihtesham; Masood, MUHAMMAD UMAR; Tunesi, Lorenzo; Ghillino, Enrico; Bardella, Paolo; Carena, Andrea; Curri, Vittorio. - ELETTRONICO. - (2021). (Intervento presentato al convegno 2021 International Conference on Optical Network Design and Modeling (ONDM) tenutosi a Gothenburg, Sweden nel June 28 - July 1, 2021).
Softwarized and Autonomous Management of Photonic Switching Systems Using Machine Learning
KHAN,IHTESHAM;MASOOD, MUHAMMAD UMAR;Tunesi, Lorenzo;Bardella, Paolo;Carena, Andrea;Curri,Vittorio
2021
Abstract
We propose a machine learning-based approach for the management of photonic switching systems in a software-defined network context. This work aims to describe a soft-warized system that is both topological and technological agnostic and can be employed in real-time.File | Dimensione | Formato | |
---|---|---|---|
1570710701.pdf
non disponibili
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
1.74 MB
Formato
Adobe PDF
|
1.74 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
C_ONDM_Softwarized_and_Autonomous_Management____V1_10032021 (1).pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
1.72 MB
Formato
Adobe PDF
|
1.72 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2917844